云南省昆明市第二十二中学2022-2023学年高二数学文模拟试题含解析_第1页
云南省昆明市第二十二中学2022-2023学年高二数学文模拟试题含解析_第2页
云南省昆明市第二十二中学2022-2023学年高二数学文模拟试题含解析_第3页
云南省昆明市第二十二中学2022-2023学年高二数学文模拟试题含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市第二十二中学2022-2023学年高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的定义域是

A.

B.

C.

D.参考答案:A2.函数的单调递减区间是A.

B.

C.

D.参考答案:D3.如图所示十字路口来往的车辆,如果不允许回头,共有不同的行车路线有(

)A.24种 B.16种 C.12种 D.10种参考答案:C根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有种,故选C.

4.已知方程,它们所表示的曲线可能是(

)A.

B.

C.

D.参考答案:B5.已知向量,且,则=(

)A..

6

B.-6

C..

D.参考答案:C6.已知集合,则是的……(

A

充分而不必要条件

B

必要而不充分条件

C

充要条件

D

既不充分也不必要条件

参考答案:A7.对一切实数x,不等式恒成立,则实数a的取值范围是(

);A.;

B.

;C.;

D..参考答案:C8.在下列结论中,正确的是(

①为真是为真的充分不必要条件②为假是为真的充分不必要条件③为真是为假的必要不充分条件④为真是为假的必要不充分条件A.①②

B.①③

C.②④

D.③④参考答案:D9.长、宽、高分别为4、3、的长方体的外接球的体积为

)A.

3

B.

C.D.

9参考答案:B10.抛物线y2=2px上一点Q(6,y0),且知Q点到焦点的距离为10,则焦点到准线的距离是()A.4 B.8 C.12 D.16参考答案:B【考点】抛物线的简单性质.【分析】由于Q点到焦点的距离为10,利用弦长公式可得,解得p.即为焦点到准线的距离.【解答】解:∵Q点到焦点的距离为10,∴,解得p=8.∴焦点到准线的距离=p=8.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.在掷一次骰子的游戏中,向上的数字是1或6的概率是____________.参考答案:略12.已知三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC=2,AB=2,设S、A、B、C四点均在以O为球心的某个球面上,则点O到平面ABC的距离为.参考答案:【考点】点、线、面间的距离计算.【专题】计算题;空间位置关系与距离.【分析】根据三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,可得S在面ABC上的射影为AB中点H,SH⊥平面ABC,在面SHC内作SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心,OH为O与平面ABC的距离,由此可得结论.【解答】解:∵三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,∴S在面ABC上的射影为AB中点H,∴SH⊥平面ABC.∴SH上任意一点到A、B、C的距离相等.∵SH=,CH=1,在面SHC内作SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心.∵SC=2∴SM=1,∠OSM=30°∴SO=,∴OH=,即为O与平面ABC的距离.故答案为:【点评】本题考查点到面的距离的计算,考查学生分析解决问题的能力,确定OHO与平面ABC的距离是关.键13.给出下列四个结论:其中所有正确结论的序号为_____________.参考答案:①、②、③、④略14.函数的定义域为__________.参考答案:{x|x≥4或x≤-2}略15.已知曲线的方程是,曲线的方程是,给出下列结论:①曲线恒过定点;②曲线的图形是一个圆;③时,与只有一个公共点;④若时,则与必无公共点。其中正确结论的序号是_____________。参考答案:略16.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于_______.参考答案:117.已知函数,则的值为_________。

参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.思南县第九届中小学运动会于2019年6月13日在思南中学举行,组委会在思南中学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高如图所示的茎叶图(单位:cm),身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.男

91577899

981612458986501723456

74211801

119

(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,求出的分布列和数学期望.参考答案:(1);(2)详见解析.【分析】(1)由题意及茎叶图,有“高个子”12人,“非高个子”18人,利用用分层抽样的方法,每个人被抽中的概率是,利用对立事件即可(2)由于从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,利用离散型随机变量的定义及题意可知的取值为0,1,2,3,利用古典概型的概率公式求出每一个值对应事件的概率,有期望的公式求出即可【详解】(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是,所以选中的“高个子”有人,“非高个子”有人.用事件A表示“至少有一名“高个子”被选中”,则它的对立事件表示“没有一名“高个子”被选中”,则因此,至少有一人是“高个子”的概率是.(2)依题意,的取值为0,1,2,3.

的分布列为:0123P

所以【点睛】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.解题时要注意茎叶图的合理运用.19.(10分)用平面向量的方法证明:三角形的三条中线交于一点.参考答案:证明:在ΔABC中,设D、E、F分别为BC、AC、AB的中点,BE与AC的交点为G,设,,则,不共线,,……(2分)设,=(4分)∵,∴,得

……(6分)

(7分)(9分)∴CG与CF共线,G在CF上∴三条中线交与一点。……(10分)20.已知椭圆的两焦点为,离心率.(1)求此椭圆的标准方程。(2)设直线,若l与此椭圆相交于P,Q两点,且等于椭圆的短轴长,求m的值。

参考答案:由题意,

,又;;,椭圆方程为:

.

(2)由消去,得,设,,则,,;;,.21.已知曲线C:,直线l:(t为参数)(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.参考答案:考点:直线的参数方程;三角函数的最值.专题:坐标系和参数方程.分析:(1)由平方关系和曲线C方程写出曲线C的参数方程,消去参数t即可得直线l的普通方程;(2)由曲线C的参数方程设曲线C上任意一点P的坐标,利用点到直线的距离公式求出点P直线l的距离,利用正弦函数求出|PA|,利用辅助角公式进行化简,再由正弦函数的性质求出|PA|的最大值与最小值.解答: 解:(1)由题意得,曲线C:,所以曲线C的参数方程为(θ为参数),因为直线l:(t为参数),所以直线l的普通方程为2x+y﹣6=0

…(2)曲线C上任意一点P(2cosθ,3sinθ),则点P直线l的距离为d==,则|PA|==|4cosθ+3sinθ﹣6|=|5sin(θ+α)﹣6|(其中α为锐角且tanα=),当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为,当sin(θ+α)=1时,|PA|取得最小值,最小值为

…点评:本题考查参数方程与普通方程互化,点到直线的距离公式,以及辅助角公式、正弦函数的性质等,比较综合,熟练掌握公式是解题的关键.22.已知点P(x,y)在圆x2+(y-1)2=1上运动.(1)求的最大值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论