版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年安徽省巢湖市普通高校对口单招高等数学一自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.A.绝对收敛B.条件收敛C.发散D.收敛性与k有关
2.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2
3.
4.
5.
6.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
7.
8.下列命题不正确的是()。
A.两个无穷大量之和仍为无穷大量
B.上万个无穷小量之和仍为无穷小量
C.两个无穷大量之积仍为无穷大量
D.两个有界变量之和仍为有界变量
9.曲线y=lnx-2在点(e,-1)的切线方程为()A.A.
B.
C.
D.
10.A.A.
B.
C.
D.
11.
12.微分方程yy'=1的通解为A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
13.
14.
15.
16.
17.
18.
19.微分方程y''-7y'+12y=0的通解为()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
20.
二、填空题(20题)21.
22.
23.
24.
25.
26.
27.如果函数f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(b)-f(a)=________。
28.
29.
30.二元函数z=x2+3xy+y2+2x,则=______.
31.设f(x)=sinx/2,则f'(0)=_________。
32.若=-2,则a=________。33.34.∫x(x2-5)4dx=________。
35.
36.37.38.39.微分方程y'+9y=0的通解为______.40.三、计算题(20题)41.42.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.43.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.44.
45.将f(x)=e-2X展开为x的幂级数.46.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
47.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.48.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
49.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
50.
51.
52.求微分方程的通解.
53.
54.55.当x一0时f(x)与sin2x是等价无穷小量,则56.证明:57.求函数f(x)=x3-3x+1的单调区间和极值.58.59.求曲线在点(1,3)处的切线方程.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答题(10题)61.62.63.设存在,求f(x).
64.给定曲线y=x3与直线y=px-q(其中p>0),求p与q为何关系时,直线y=px-q是y=x3的切线.
65.
66.
67.
68.
69.
70.
五、高等数学(0题)71.设生产某产品利润L(x)=5000+x一0.0001x2百元[单位:件],问生产多少件时利润最大,最大利润是多少?
六、解答题(0题)72.
参考答案
1.A本题考查的知识点为无穷级数的收敛性。
2.D
3.C
4.A
5.C
6.C
7.C解析:
8.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是无穷大。
9.D
10.C本题考查的知识点为复合函数求导.
可知应选C.
11.C
12.D
13.B
14.D
15.A
16.A
17.B
18.A
19.C因方程:y''-7y'+12y=0的特征方程为r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解为:y=C1e3x+C2e4x
20.C
21.y''=x(asinx+bcosx)
22.2
23.
24.
本题考查的知识点为初等函数的求导运算.
本题需利用导数的四则运算法则求解.
本题中常见的错误有
这是由于误将sin2认作sinx,事实上sin2为-个常数,而常数的导数为0,即
请考生注意,不论以什么函数形式出现,只要是常数,它的导数必定为0.
25.
26.11解析:
27.f"(ξ)(b-a)由题目条件可知函数f(x)在[a,b]上满足拉格朗日中值定理的条件,因此必定存在一点ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。
28.
29.-130.2x+3y+2本题考查的知识点为二元函数的偏导数运算.
则
31.1/232.因为=a,所以a=-2。
33.
34.
35.0
36.
37.本题考查的知识点为极限运算.
38.
本题考查的知识点为极限的运算.
若利用极限公式
如果利用无穷大量与无穷小量关系,直接推导,可得
39.y=Ce-9x本题考查的知识点为求解可分离变量微分方程.
分离变量
两端分别积分
lny=-9x+C1,y=Ce-9x.
40.
41.
42.
43.
列表:
说明
44.
则
45.
46.
47.由二重积分物理意义知
48.
49.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
50.51.由一阶线性微分方程通解公式有
52.
53.
54.
55.由等价无穷小量的定义可知
56.
57.函数的定义域为
注意
58.
59.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
60.解:原方程对应的齐次方程为y"-4y'+4y=0,
61.62.
63.本题考查的知识点为两个:极限的运算;极限值是个确定的数值.
设是本题求解的关键.未知函数f(x)在极限号内或f(x)在定积分号内的、以方程形式出现的这类问题,求解的基本思想是一样的.请读者明确并记住这种求解的基本思想.
本题考生中多数人不会计算,感到无从下手.考生应该记住这类题目的解题关键在于明确:
如果存在,则表示一个确定的数值.
64.
65.
66.
67.
68.
69.
70.
71.L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;L""(x)=一0.0002<0∴x=5000取极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 充电桩采购合同
- 企业正式聘用合同模板
- 2024年智能穿戴设备技术研发合同
- 破火器和喷洒系统的应用
- 中石化成品油购销合同
- 房屋承租转租合同书
- 有关设备采购合同范本
- 工程担保合同的反担保
- 新装修插座采购合同范本年
- 南方公司电网基建项目危险性较大的分部分项工程安全管理工作指引
- 挖掘机售后保养及维修服务协议(2024版)
- 公司组织架构与管理体系制度
- 2023-2024年度数字经济与驱动发展公需科目答案(第5套)
- 职业分类表格
- 广东省深圳高级中学2023-2024学年八年级下学期期中考试物理试卷
- 电网建设项目施工项目部环境保护和水土保持标准化管理手册(变电工程分册)
- 口腔门诊部设置可行性研究报告
- 体检科运营可行性报告
- 北京市丰台区市级名校2024届数学高一第二学期期末检测模拟试题含解析
- 设立项目管理公司组建方案
- 薪酬战略与实践
评论
0/150
提交评论