沪科版七年级下册数学8.4因式分解同步练习(含解析)_第1页
沪科版七年级下册数学8.4因式分解同步练习(含解析)_第2页
沪科版七年级下册数学8.4因式分解同步练习(含解析)_第3页
沪科版七年级下册数学8.4因式分解同步练习(含解析)_第4页
沪科版七年级下册数学8.4因式分解同步练习(含解析)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版七年级下册数学8.4因式分解同步练习、选择题(本大题共8小题)TOC\o"1-5"\h\z.下列各式从左到右的变形中,是因式分解的为( )A. x(a—b)=ax—bxB . x2—1+y2=(x—1)(x+1) +y2C. x2-1= (x+1)(x-1) D.ax+bx+c=x(a+b)+c.下列各式中,不含因式a+1的是( )A.2a2+2a B.a2+2a+1 C.a2-1D.-।.若多项式x4+m)3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100A.100B.0C.-100D50.下列各式的变形中,正确的是( )一 .一 2 2A.(xy)(xy)xyCxCx24x3(x2)21D.x(x2 x)11x5.多项式①2x?—x,5.多项式①2x?—x,②(*—1)2—4(*—1)+4,③(x+1)2-4x(x+1)+4,④-4x2-1+4x;分解因式后,结果含有相同因式的是( )A.①④B,①② C.③④D.②③6.已知不论x为何值,x2-kx-15=(x+5)(x-3),则k值为( )A、A、2B、-2C、5D、-3.把多项式(n+1)(m1)+(m1)分解因式,一个因式是(m1),则另一个因式是( )A、n+1B、2mC、2D、n+2.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式 x3-xy2,取x=20,y=10,用上述方法产生的密码不可能A.201010 B,203010 C.301020 D,201030二、填空题(本大题共6小题).简便计算:7.292-2.712=.10.如图所示,根据图形把多项式 a2+5ab+4b2因式分解=.已知a2-a-1=0,贝Ua3-a2-a+2016=..若x2xm(x3)(xn)对x恒成立,则n=2.在实数范围内因式分解: xy3y=.已知a2-6a+9与|b-1|互为相反数,计算a3b3+2a2b2+ab的结果是三、计算题(本大题共4小题)15.分解因式:2a(y-z)-3b(z-y)-a4+16a2b-2ab+b3(x—2y)2-3x+6y.16.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式二(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式( x2-2x)(x2-2x+2)+1进行因式分解.17.如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图 (图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足工a2+b2-a-6b+10=0,求该几何体的表面积.418.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是怎样的?写出得到公式的过程.参考答案:一、选择题(本大题共8小题)C分析:根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2-1=(x+1)(x-1),正确;D、结果不是积的形式,故选项错误.故选:C.D分析;本题需先对每个式子进行因式分解,即可得出不含因式 a+1的式子.解:A、.12a2+2a=2a(a+1),故本选项正确;B、a2+2a+1=(a+1)2,故本选项正确;C、a2-1=(a+1)(a-1),故本选项正确;d、晨,2,故本选项错误.故选D.C分析:根据因式分解的意义解答即可.解:设x4+mX+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mX+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5x20=-100.故选C.A分析:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法.2 2 .斛:A.(xy)(xy)xy,正确;B.1x2B.1x2错误;二、填空题(本大题共二、填空题(本大题共6小题)X24x3(x2)21,错误;O 1…一,一X(xx) ,徐庆;故选A.X1.A分析:根据提公因式法和完全平方公式把各选项的多项式分解因式,然后再找出结果中含有相同因式的即可.解:①2x2-x=x(2x-1);②(x-1)2-4(x-1)+4=(x-3)2;③(x+1)2-4x(x+1)+4无法分解因式;④-4x2T+4x=-(4x2-4x+1)=-(2x-1)2.所以分解因式后,结果中含有相同因式的是①和④.故选:A..B分析:直接利用多项式乘以多项式得出等式右边多项式进而得出 k的值.解:.■x2-kx-15=(x+5)(x-3),x2-kx-15=x2+2x-15,.•--k=2,贝Uk=-2.故选B..D分析:把多项式(m+1)(m1)+(m-1)提取公因式(m-1)后,即可知答案.解:(m+1)(m-1)+(m1)=(m-1)(m+1+1)=(m1)(m+2),故选D..A分析:对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.解:x3-xy2=x(x2—y2)=x(x+y)(x—y),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是 201010.故选A..分析:根据平方差公式, a2-b2=(a+b)(a-b),即可解答出;解:根据平方差公式得,292-2.712=(7.29+2.71)(7.29-2.71),=10X4.58,=45.8;故答案为:45.8..分析:根据图形和等积法可以对题目中的式子进行因式分解.解:由图可知,a2+5ab+4b2=(a+b)(a+4b),故答案为:(a+b)(a+4b)..分析:在代数式a3-a2-a+2016中提取出a,再将a2-a-1=0代入其中即可得出结论.解:'''a—a—1=0,a3-a2-a+2016=a(a2-a-1)+2016=0+2016=2016.故答案为:2016..分析:因式分解-十字相乘法等.解::x2xm(x3)(xn), x2xmx2(n3)x3n,故n31,解得:n=4.故答案为:4..分析:实数范围内分解因式.解:原式=y(x23)=y(xV3)(x73),故答案为:y(xJ3)(x石)..分析:根据互为相反数的性质和非负数的性质求得 a,b的值,再进一步代入求解.解:a2-6a+9=(a-3)2.依题意得(a―3)2+|b-1|=0,则a-3=0.b-1=0,解得a=3,b=1.所以a3b3+2a2b2+ab=ab(a2b2+2ab+1)=ab(ab+1)2=3X16=48,故答案为:48.三、计算题(本大题共4小题).分析:(1)直接提公因式y-z即可;(2)利用平方差分解后,再利用平方差进行二次分解即可;(3)首先提公因式b,再利用完全平方公式进行分解即可;(4)首先把后两项组合提公因式 3,再提公因式3(x-2y)即可.解:(1)原式=2a(y—z)+3b(y—z)=(y—z)(2a+3b);(2)原式=(4-a2)(4+a2)=(2-a)(2+a)(4+a2);(3)原式=b(a2-2a+1)=b(a-1)2;(4)原式=3(x-2y)2-3(x-2y)=3(x-2y)(x-2yT)..分析:(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;x2-4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.解:(1)运用了C,两数和的完全平方公式;(2)x2-4x+4还可以分解,分解不彻底;(3)设x2-2x=y.(x2-2x)(x2-2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2-2x+1)2,.分析:(1)侧面四个长方形和上下两个底面也是长方形,所以折叠后能围成长方体.(2)根据图1所标注的相关线段的长度画出其左视图;(3)对“a2+b2-a-6b+10=0进行因式分解,求得a、b的值,则易求h的值,然后由几何体的表面积计算公式进行解答.解:(1)根据该包装盒的表面展开图知,该几何体模型的名称为:长方体或底面为长方形的直棱柱.故答案为:长方体或底面为长方形的直棱柱;(2)如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论