




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年甘肃省武威市普通高校对口单招高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.下列关于构建的几何形状说法不正确的是()。
A.轴线为直线的杆称为直杆B.轴线为曲线的杆称为曲杆C.等截面的直杆称为等直杆D.横截面大小不等的杆称为截面杆
2.
A.1B.0C.-1D.-2
3.A.A.
B.
C.
D.
4.
5.
6.A.有一个拐点B.有两个拐点C.有三个拐点D.无拐点
7.
8.设y=2-x,则y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
9.设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为().A.A.
B.
C.
D.不能确定
10.过点(0,2,4)且平行于平面x+2z=1,y-3z=2的直线方程为
A.
B.
C.
D.-2x+3(y-2)+z-4=0
11.
12.设y=f(x)在[0,1]上连续,且f(0)>0,f(1)<0,则下列选项正确的是
A.f(x)在[0,1]上可能无界
B.f(x)在[0,1]上未必有最小值
C.f(x)在[0,1]上未必有最大值
D.方程f(x)=0在(0,1)内至少有一个实根
13.设Y=e-3x,则dy等于().
A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
14.
15.A.
B.
C.
D.
16.
17.
18.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),则在(0,1)内曲线y=f(x)的所有切线中().A.A.至少有一条平行于x轴B.至少有一条平行于y轴C.没有一条平行于x轴D.可能有一条平行于y轴
19.
20.A.1/x2
B.1/x
C.e-x
D.1/(1+x)2
二、填空题(20题)21.22.
23.
24.
25.
26.
27.28.29.30.设z=x2y+siny,=________。31.设区域D由y轴,y=x,y=1所围成,则.32.过点(1,-1,0)且与直线平行的直线方程为______。
33.
34.
35.
36.微分方程dy+xdx=0的通解为y=__________.
37.
38.
39.
40.
三、计算题(20题)41.
42.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
43.
44.求微分方程y"-4y'+4y=e-2x的通解.
45.46.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
47.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.48.求微分方程的通解.
49.
50.求函数f(x)=x3-3x+1的单调区间和极值.51.当x一0时f(x)与sin2x是等价无穷小量,则
52.
53.证明:54.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.55.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.56.将f(x)=e-2X展开为x的幂级数.57.求曲线在点(1,3)处的切线方程.58.59.60.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.四、解答题(10题)61.
62.求微分方程y"+4y=e2x的通解。
63.求垂直于直线2x-6y+1=0且与曲线y=x3+3x2-5相切的直线方程.64.设y=y(x)由方程X2+2y3+2xy+3y-x=1确定,求y'.
65.
66.
67.
68.求y"+2y'+y=2ex的通解.
69.70.五、高等数学(0题)71.判定
的敛散性。
六、解答题(0题)72.
参考答案
1.D
2.A
本题考查的知识点为导数公式.
可知应选A.
3.B
4.B
5.D
6.D
7.C
8.D本题考查的知识点为复合函数求导数的链式法则。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易错误选C,这是求复合函数的导数时丢掉项而造成的!因此考生应熟记:若y=f(u),u=u(x),则
不要丢项。
9.B本题考查的知识点为定积分的几何意义.
由定积分的几何意义可知应选B.
常见的错误是选C.如果画个草图,则可以避免这类错误.
10.C
11.A解析:
12.D
13.C
14.A
15.D本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法。因此选D。
16.A
17.A
18.A本题考查的知识点有两个:罗尔中值定理;导数的几何意义.
由题设条件可知f(x)在[0,1]上满足罗尔中值定理,因此至少存在一点ξ∈(0,1),使f'(ξ)=0.这表明曲线y=f(x)在点(ξ,f(ξ))处的切线必定平行于x轴,可知A正确,C不正确.
如果曲线y=f(x)在点(ξ,f(ξ))处的切线平行于y轴,其中ξ∈(0,1),这条切线的斜率为∞,这表明f'(ξ)=∞为无穷大,此时说明f(x)在点x=ξ不可导.因此可知B,D都不正确.
本题对照几何图形易于找出解答,只需依题设条件,画出一条曲线,则可以知道应该选A.
有些考生选B,D,这是由于不明确导数的几何意义而导致的错误.
19.A
20.A本题考查了反常积分的敛散性的知识点。21.0.
本题考查的知识点为定积分的性质.
积分区间为对称区间,被积函数为奇函数,因此
22.
23.-2y-2y解析:
24.
25.
26.
27.-24.
本题考查的知识点为连续函数在闭区间上的最大值.
若f(x)在(a,b)内可导,在[a,b]上连续,常可以利用导数判定f(x)在[a,b]上的最值:
28.1/z本题考查了二元函数的二阶偏导数的知识点。
29.30.由于z=x2y+siny,可知。31.1/2本题考查的知识点为计算二重积分.其积分区域如图1-2阴影区域所示.
可利用二重积分的几何意义或将二重积分化为二次积分解之.
解法1由二重积分的几何意义可知表示积分区域D的面积,而区域D为等腰直角三角形,面积为1/2,因此.
解法2化为先对y积分,后对x积分的二次积分.
作平行于y轴的直线与区域D相交,沿y轴正向看,入口曲线为y=x,作为积分下限;出口曲线为y=1,作为积分上限,因此
x≤y≤1.
区域D在x轴上的投影最小值为x=0,最大值为x=1,因此
0≤x≤1.
可得知
解法3化为先对x积分,后对Y积分的二次积分.
作平行于x轴的直线与区域D相交,沿x轴正向看,入口曲线为x=0,作为积分下限;出口曲线为x=y,作为积分上限,因此
0≤x≤y.
区域D在y轴上投影的最小值为y=0,最大值为y=1,因此
0≤y≤1.
可得知
32.本题考查的知识点为直线的方程和直线与直线的关系。由于两条直线平行的充分必要条件为它们的方向向量平行,因此可取所求直线的方向向量为(2,1,-1).由直线的点向式方程可知所求直线方程为
33.
34.
35.
36.
37.
本题考查的知识点为定积分运算.
38.
39.
本题考查的知识点为定积分的换元法.
解法1
解法2
令t=1+x2,则dt=2xdx.
当x=1时,t=2;当x=2时,t=5.
这里的错误在于进行定积分变量替换,积分区间没做变化.
40.41.由一阶线性微分方程通解公式有
42.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
43.
则
44.解:原方程对应的齐次方程为y"-4y'+4y=0,
45.
46.
47.
48.
49.50.函数的定义域为
注意
51.由等价无穷小量的定义可知
52.
53.
54.由二重积分物理意义知
55.
56.57.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
58.
59.
60.
列表:
说明
61.
62.63.由于直线2x-6y+1=0的斜率k=1/3,与其垂直的直线的斜率k1=-1/k=-3.对于y=x3+3x25,y'=3x2+6x.由题意应有3x2+6x=-3,因此x2+2x+1=0,x=-1,此时y=(-1)3+3(-1)2-5=-3.即切点为(-1,-3).切线方程为y+3=-3(x+1),或写为3x+y+6=0.本题考查的知识点为求曲线的切线方程.
求曲线y=f(x,y)的切线方程,通常要找出切点及函数在切点处的导数值.所给问题没有给出切点,因此依已给条件找出切点是首要问题.得出切点、切线的斜率后,可依直线的点斜式方程求出切线方程.64.解法1将所给方程两端关于x求导,可得2x+6y2·y'+2(y+xy')+3y'-1=0,整理可得
解法2令F(x,y)=x2+2y3+2xy+3y-x-1,则本题考查的知识点为隐函数求导法.
y=y(x)由方程F(x,Y)=0确定,求y'通常有两种方法:
一是将F(x,y)=0两端关于x求导,认定y为中间变量,得到含有y'的方程,从中解出y'.
二是利用隐函数求导公式其中F'x,F'y分别为F(x,y)=0中F(x,y)对第一个位置变元的偏导数与对第二个位置变元的偏导数.
对于一些特殊情形,可以从F(x,y)=0中较易地解出y=y(x)时,也可以先求出y=y(x),再直接求导.
65.
66.
67.
68.相应微分方程的齐次微分方程为y"+2y'+y=0.其特征方程为r2+2r+1=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国税制试题及答案
- 云南红河州第一中学2025年物理高二第二学期期末复习检测模拟试题含解析
- 云南省元江一中2025届高二物理第二学期期末统考模拟试题含解析
- 云南省建水第六中学2024-2025学年高二化学第二学期期末质量跟踪监视模拟试题含解析
- 仓储物业服务租赁合同
- 场地环境修复与治理工程合同模板
- 塔吊设备安装与操作人员责任保险合同
- 车辆贷款反担保抵押担保合同
- 家政服务合同范文集合(19篇)
- 公司锅炉运输合同(4篇)
- 2024年江苏省昆山市事业单位公开招聘教师岗考试题带答案分析
- 2025年无人机操控师考试试题及答案
- 2025年苏州市中考英语二模模拟试题(六)(含解析)
- 2025年中考物理答题技巧与模式专题08压强与浮力的常考难点综合计算(学生版+解析)
- 水电使用合同协议书
- 考古发掘考试试题及答案
- 血液透析机试题及答案
- 中国兽药典三部 2020年版
- NB/T 11646-2024井工煤矿采空区自然发火监测预警技术规范
- 农药植保和农药知识课件
- 2025年六五环境日生态环保常识及法律知识有奖竞答题库及答案(共90题)
评论
0/150
提交评论