高中数学 1.3.12《函数的最大(小)值》 新人教必修1_第1页
高中数学 1.3.12《函数的最大(小)值》 新人教必修1_第2页
高中数学 1.3.12《函数的最大(小)值》 新人教必修1_第3页
高中数学 1.3.12《函数的最大(小)值》 新人教必修1_第4页
高中数学 1.3.12《函数的最大(小)值》 新人教必修1_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3.1-2《函数的最大(小)值》2023/1/171.教学目标

使学生掌握增函数、减函数、单调区间的概念,会根据图象说出函数的单调区间,并指出在单调区间内函数的增减性。会证明函数的单调性。教学重点:根据函数图象说出函数的单调区间,并指出增减性。教学难点:函数单调性的证明。2023/1/172.画出下列函数的草图,并根据图象解答下列问题:

1说出y=f(x)的单调区间,以及在各单调区间上的单调性;2指出图象的最高点或最低点,并说明它能体现函数的什么特征?

(1)(2)

xyooxy2-12023/1/173.

1.最大值

一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:

(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值

2023/1/174.2.最小值

一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:

(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值

2023/1/175.2、函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).

注意:1、函数最大(小)值首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;2023/1/176.例3、“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果在距地面高度hm与时间ts之间的关系为:h(t)=-4.9t2+14.7t+18

,那么烟花冲出后什么时候是它的爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)2023/1/177.解:作出函数h(t)=-4.9t2+14.7t+18的图象(如图).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由于二次函数的知识,对于h(t)=-4.9t2+14.7t+18,我们有:于是,烟花冲出后1.5秒是它爆裂的最佳时刻,这时距地面的高度为29m.2023/1/178.例3.求函数在区间[2,6]上的最大值和最小值.

解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则由于2<x1<x2<6,得x2-x1>0,(x1-1)(x2-1)>0,于是所以,函数是区间[2,6]上的减函数.2023/1/179.因此,函数在区间[2,6]上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4.2023/1/1710.(二)利用函数单调性判断函数的最大(小)值的方法

1.利用二次函数的性质(配方法)求函数的最大(小)值

2.利用图象求函数的最大(小)值

3.利用函数单调性的判断函数的最大(小)值

如果函数y=f(x)在区间[a,b]上单调递增,则函数y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

2023/1/1711.课堂练习1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,则a的取值范围是()A、a≥3B、a≤3C、a≥-3D、a≤-3D2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f(x)在[1,2]上的值域____________.[21,39]2023/1/1712.2023/1/1713.2023/1/1714.2023/1/171

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论