上海市宝山区长江第二中学2023年高三数学文期末试卷含解析_第1页
上海市宝山区长江第二中学2023年高三数学文期末试卷含解析_第2页
上海市宝山区长江第二中学2023年高三数学文期末试卷含解析_第3页
上海市宝山区长江第二中学2023年高三数学文期末试卷含解析_第4页
上海市宝山区长江第二中学2023年高三数学文期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市宝山区长江第二中学2023年高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,在正三棱柱ABC-A1B1C1中,AB=2,若二面角C-AB-C1的大小为,则异面直线A1B1和BC1所成角的余弦值为(

A.

B.

C.

D.参考答案:D取AB的中点D,连接CD,C1D,则有。在中,。注意到,因此是直线与所成的角或补角,因此直线与所成的角的余弦值是,故选D。本题考查正三棱柱的性质、二面角的意义及异面直线所成的角。2.命题“?x∈R,x2+1≥1”的否定是()A. ?x∈R,x2+1<1

B.?x∈R,x2+1≤1 C. ?x∈R,x2+1<1

D.?x∈R,x2+1≥1参考答案:C略3.如图是函数y=sin(ωx+φ)(ω>0,0<φ<π)的图像的一部分,A,B是图像上的一个最高点和一个最低点,O为坐标原点,则·的值为(

)A.π

B.π2+1

C.π2-1

D.π2-1参考答案:C4.已知集合A={x|x2+3x+2≤0},B={y|y=2x-1,x∈R},则A∩CRB=(

)A.

B.{-1}

C.[-2,-1]

D.[-2,-1)参考答案:CA={x|x2+3x+2≤0},B={y|y=2x-1,x∈R},所以A∩CRB=[-2,-1]。5.某店一个月的收入和支出总共记录了N个数据,,。。。,其中收入记为正数,支出记为负数。该店用如下图的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的

A.A>0,V=S-T

B.A<0,V=S-TC.A>0,V=S+T

D.A<0,V=S+T

参考答案:C略6.已知是关于的方程:的两个根,则的值为(

)A.

B.

C.

D.随的变化而变化参考答案:A略7.若三棱锥的所有顶点都在球的球面上,⊥平面,,,,则球的表面积为

)A.

B.

C.

D.参考答案:B略8.函数f(x)=log2(x2+2x﹣3)的定义域是()A.[﹣3,1] B.(﹣3,1) C.(﹣∞,﹣3]∪[1,+∞) D.(﹣∞,﹣3)∪(1,+∞)参考答案:D【考点】74:一元二次不等式的解法;4K:对数函数的定义域.【分析】利用对数函数的真数大于0求得函数定义域.【解答】解:由题意得:x2+2x﹣3>0,即(x﹣1)(x+3)>0解得x>1或x<﹣3所以定义域为(﹣∞,﹣3)∪(1,+∞)故选D.9.已知复数,且为实数,则

A.3 B.2 C. D.参考答案:C略10.已知函数的反函数是且),则函数的图像必过点A.

B.

C.

D.参考答案:答案:D二、填空题:本大题共7小题,每小题4分,共28分11.若的展开式中项的系数是15,则的值为

.参考答案:512.许多建筑物的地板是用正多边形的砖板铺成的(可以是多种正多边形).如果要求用这些正多边形的砖板铺满地面,在地面某一点(不在边界上)有k块砖板拼在一起,则k的所有可能取值为参考答案:3,4,5,6本题考查逻辑推理与多边形的性质.由题意知只需这k块砖板的角度之和为360°即可.显然k≥3,因为任意正多边形内角小于180°;且k≤6,因为角度最小的正多边形为正三角形,.当k=3时,3个正六边形满足题意;当k=4时,4个正方形满足题意;当k=5时,3个正三角形与2个正方形满足题意;当k=6时,6个正三角形满足题意.综上,所以k可能为3,4,5,6.13.已知数列是正项等比数列,若,,则数列的前n项和的最大值为

.参考答案:1514.若点P(1,1)为圆的弦MN的中点,则弦MN所在直线的方程为

.参考答案:因为为圆的弦的中点,所以圆心坐标为,,所在直线方程为,化简为,故答案为.

15.函数的定义域为

.参考答案:16.椭圆两焦点之间的距离为

.参考答案:17.已知x,y满足,若目标函数z=x+2y的最大值为n,则展开式的常数项为.参考答案:240【考点】7C:简单线性规划;DC:二项式定理的应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得n,再由二项式的通项求解.【解答】解:由约束条件x,y满足,作出可行域如图,联立,解得A(2,2),化目标函数z=x+2y为y=﹣+,由图可知,当直线y=﹣+过A时,直线在y轴上的截距最大,z有最大值为6.则=.由Tr+1=(﹣2)r?.令6﹣=0得r=4.∴则展开式的常数项为=240.故答案为:240.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法与数学转化思想方法,考查二项式定理的应用,是中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中.直线,圆:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)若直线的极坐标方程为,设与的交点为,,求△C2MN的面积参考答案:(1),;(2).试题分析:(1)将代入的直角坐标方程,化简得,;(2)将代入,得得,所以,进而求得面积为.试题解析:(1)因为,所以的极坐标方程为,的极坐标方程为(2)将代入得得

,所以因为的半径为1,则的面积为考点:坐标系与参数方程.19.已知函数f(x)=(2﹣a)lnx++2ax(a∈R).(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当a<0时,求f(x)单调区间;(Ⅲ)若对任意a∈(﹣3,﹣2)及x1,x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;函数恒成立问题;利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)当a=0时,f(x)=2lnx+,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值;(Ⅱ)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间;(Ⅲ)若对任意a∈(﹣3,﹣2)及x1,x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围.【解答】解:(Ⅰ)依题意知f(x)的定义域为(0,+∞),当a=0时,f(x)=2lnx+,f′(x)=﹣=,令f′(x)=0,解得x=,当0<x<时,f′(x)<0;当x≥时,f′(x)>0又∵f()=2﹣ln2∴f(x)的极小值为2﹣2ln2,无极大值.(Ⅱ)f′(x)=﹣+2a=当a<﹣2时,﹣<,令f′(x)<0得0<x<﹣或x>,令f′(x)>0得﹣<x<;当﹣2<a<0时,得﹣>,令f′(x)<0得0<x<或x>﹣,令f′(x)>0得<x<﹣;当a=﹣2时,f′(x)=﹣≤0,综上所述,当a<﹣2时f(x),的递减区间为(0,﹣)和(,+∞),递增区间为(﹣,);当a=﹣2时,f(x)在(0,+∞)单调递减;当﹣2<a<0时,f(x)的递减区间为(0,)和(﹣,+∞),递增区间为(,﹣).(Ⅲ)由(Ⅱ)可知,当a∈(﹣3,﹣2)时,f(x)在区间[1,3]上单调递减,当x=1时,f(x)取最大值;当x=3时,f(x)取最小值;|f(x1)﹣f(x2)|≤f(1)﹣f(3)=(1+2a)﹣[(2﹣a)ln3++6a]=﹣4a+(a﹣2)ln3,∵(m+ln3)a﹣ln3>|f(x1)﹣f(x2)|恒成立,∴(m+ln3)a﹣2ln3>﹣4a+(a﹣2)ln3整理得ma>﹣4a,∵a<0,∴m<﹣4恒成立,∵﹣3<a<﹣2,∴﹣<﹣4<﹣,∴m≤﹣20.已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程,并说明其表示什么轨迹.(2)若直线的极坐标方程为sinθ﹣cosθ=,求直线被曲线C截得的弦长.参考答案:【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)由sin2α+cos2α=1,能求出曲线C的普通方程,再由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出曲线C的极坐标方程,由此得到曲线C是以(3,1)为圆心,以为半径的圆.(2)先求出直线的直角坐标为x﹣y+1=0,再求出圆心C(3,1)到直线x﹣y+1=0的距离d,由此能求出直线被曲线C截得的弦长.【解答】解:(1)∵曲线C的参数方程为(α为参数),∴由sin2α+cos2α=1,得曲线C的普通方程为(x﹣3)2+(y﹣1)2=10,即x2+y2=6x+2y,由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,得曲线C的极坐标方程为ρ2=6ρcosθ+2ρsinθ,即ρ=6cosθ+2sinθ,它是以(3,1)为圆心,以为半径的圆.(2)∵直线的极坐标方程为sinθ﹣cosθ=,∴ρsinθ﹣ρcosθ=1,∴直线的直角坐标为x﹣y+1=0,∵曲线C是以(3,1)为圆心,以r=为半径的圆,圆心C(3,1)到直线x﹣y+1=0的距离d==,∴直线被曲线C截得的弦长|AB|=2=2=.【点评】本题考查曲线的极坐标方程的求法,考查直线被圆截得的弦长的求法,是基础题,解题时要认真审题,注意极坐标方程、普通方程、参数方程互化公式的合理运用.21.已知=(2sinx,1),=(2cos(x-),),设函数-2(Ⅰ)求f(x)的最小正周期、零点;(Ⅱ)求f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论