下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市嘉定区南翔中学2023年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线与曲线有公共点,则b的取值范围是 ()A. B.C. D.参考答案:C略2.记Ⅰ为虚数集,设,,则下列类比所得的结论正确的是(
)A.由,类比得B.由,类比得C.由,类比得D.由,类比得参考答案:C3.已知有下列各式:,成立,观察上面各式,按此规律若,则正数(
)A.4
B.5
C.
D.参考答案:C4.函数在闭区间[-3,0]上的最大值、最小值分别是(
)A.1,-1 B.3,-17 C.1,-17 D.9,-19参考答案:B试题分析:求导,用导研究函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的单调性,利用单调性求函数的最值.解:f′(x)=3x2﹣3=0,x=±1,故函数f(x)=x3﹣3x+1[﹣3,﹣1]上是增函数,在[﹣1,0]上是减函数又f(﹣3)=﹣17,f(0)=1,f(1)=﹣1,f(﹣1)=3.故最大值、最小值分别为3,﹣17;故选C.5.点P是曲线上任意一点,则点P到直线的最小距离是(
)A. B. C. D.参考答案:B将直线4x+4y+1=0平移后得直线l:4x+4y+b=0,使直线l与曲线切于点P(x0,y0),由x2-y-2ln=0得y′=2x-,∴直线l的斜率k=2x0-=-1?x0=或x0=-1(舍去),∴P,所求的最短距离即为点P到直线4x+4y+1=0的距离d==(1+ln2).故选B.6.已知变量x,y满足约束条件,则目标函数z=3x﹣y的最小值为()A.﹣8 B.﹣5 C.﹣2 D.﹣1参考答案:A【考点】简单线性规划.【专题】数形结合;综合法;不等式.【分析】画出满足条件的平面区域,求出A点的坐标,将z=3x﹣y变形为y=3x﹣z,显然直线过A(﹣2,2)时z最小,求出z的最小值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(﹣2,2),由z=3x﹣y得y=3x﹣z,显然直线过A(﹣2,2)时z最小,z的最小值是﹣8,故选:A.【点评】本题考察了简单的线性规划问题,考察数形结合思想,是一道基础题.7.为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为()A.50 B.45 C.40 D.20参考答案:B【考点】分层抽样方法.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用分层抽样性质求解.【解答】解:∵高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,∴由分层抽样性质,得:,解得n=45.故选:B.【点评】本题考查样本容量的求法,是基础题,解题时要认真审题,注意分层抽样的性质的合理运用.8.函数y=2x3﹣3x2﹣12x+5在区间上最大值与最小值分别是()A.5,﹣15 B.5,﹣4 C.﹣4,﹣15 D.5,﹣16参考答案:A【考点】6E:利用导数求闭区间上函数的最值.【分析】对函数y=2x3﹣3x2﹣12x+5求导,利用导数研究函数在区间上的单调性,根据函数的变化规律确定函数在区间上最大值与最小值位置,求值即可【解答】解:由题意y'=6x2﹣6x﹣12令y'>0,解得x>2或x<﹣1故函数y=2x3﹣3x2﹣12x+5在(0,2)减,在(2,3)上增又y(0)=5,y(2)=﹣15,y(3)=﹣4故函数y=2x3﹣3x2﹣12x+5在区间上最大值与最小值分别是5,﹣15故选A【点评】本题考查用导数判断函数的单调性,利用单调性求函数的最值,利用单调性研究函数的最值,是导数的重要运用,注意上类题的解题规律与解题步骤.9.如果a>b>0,那么下列不等式中不正确的是(
)A. B. C.ab>b2 D.a2>ab参考答案:B【考点】不等关系与不等式.【专题】不等式的解法及应用.【分析】由a>b>0,可得ab>0且a2>b2>0,利用不等式的性质2“不等式的两边同乘(除)一个正数,不等号方向不变”,逐一分析四个答案的正误,可得答案【解答】解:∵a>b>0,∴ab>0∴,即,故A答案正确;∴a2>b2>0,即>,即,故B答案正确;∴ab>b2,故C答案正确;∴a2>ab,故D答案正确;故不等式中不正确的是B故选B【点评】本题考查的知识点是不等式与不等关系,熟练掌握不等式的性质是解答的关键.10.方程的两个根可分别作为()
A.一椭圆和一双曲线的离心率
B.两抛物线的离心率C.一椭圆和一抛物线的离心率
D.两椭圆的离心率参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知a>0且a≠1,关于x的方程|ax﹣1|=5a﹣4有两个相异实根,则a的取值范围是.参考答案:【考点】根的存在性及根的个数判断.【分析】先画出a>1和0<a<1时的两种图象,根据图象可直接得出答案.【解答】解:据题意,函数y=|ax﹣1|(a>0,a≠1)的图象与直线y=5a﹣4有两个不同的交点.当a>1时,0<5a﹣4<1,所以a∈(,1),舍去.当0<a<1时由图知,0<5a﹣4<1,所以a∈(,1),故答案为:.12.设复数,,在复平面上所对应点在直线上,则=
。参考答案:13.双曲线3x2﹣y2=3的渐近线方程是.参考答案:y=±x【考点】双曲线的简单性质.【分析】双曲线3x2﹣y2=3的标准形式为,其渐近线方程是,整理后就得到双曲线的渐近线.【解答】解:双曲线3x2﹣y2=3的标准形式为,其渐近线方程是,整理得.故答案为.14.已知数列的各项如下:…,求它的前n项和Sn=
;参考答案:
15.不等式ax+bx+c>0,解集区间(-,2),对于系数a、b、c,则有如下结论:①
a>0
②b>0
③c>0④a+b+c>0
⑤a–b+c>0,其中正确的结论的序号是________________________________.参考答案:
2、3、416.底面半径为1高为3的圆锥的体积为
.参考答案:π【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的体积公式,能求出结果.【解答】解:底面半径为1高为3的圆锥的体积为:V==π.故答案为:π.17.与圆外切,且与y轴相切的动圆圆心的轨迹方程为 或
.参考答案:,解析:由圆锥曲线的定义,圆心可以是以(2,0)为焦点、
为准线的抛物线上的点;若切点是原点,则圆心在x轴负半轴上.所以轨迹方程为
,或三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)在等差数列{an}中,已知a1=3,a4=12(1)求数列{an}的通项公式。(2)数列{bn}为等比数列,且b1=a2,b2=a4,求数列{bn}的通项公式及前n项和Sn.参考答案:略19.(本小题满分14分)已知等差数列满足:,,的前项和为.(Ⅰ)求及;(Ⅱ)令,求数列的前项和.参考答案:(Ⅰ)设等差数列的公差为d,因为,,所以有,解得,所以;==。(Ⅱ)由(Ⅰ)知,所以bn===,所以==,即数列的前n项和=。20.(本小题满分12分)已知函数f(x)=ln(x+1)-x.⑴求函数f(x)的单调递减区间;⑵若,证明:.参考答案:解:⑴函数f(x)的定义域为.=-1=-。由<0及x>-1,得x>0.∴当x∈(0,+∞)时,f(x)是减函数,即f(x)的单调递减区间为(0,+∞).⑵证明:由⑴知,当x∈(-1,0)时,>0,当x∈(0,+∞)时,<0,因此,当时,≤,即≤0∴.令,则=.∴当x∈(-1,0)时,<0,当x∈(0,+∞)时,>0.∴当时,≥,即≥0,∴.综上可知,当时,有.略21.已知p:对任意实数x都有恒成立;q:关于x的方程有实数根;如果p与q中有且仅有一个为真命题,求实数a的取值范围.参考答案:对任意实数x都有x2+x+1>0恒成立?=0或?0≤<4;
………2分关于x的方程x2-x+=0有实数根?1-4≥0?;
…………4分如果p真,且q假,有0≤<4,且,∴;
…………6分如果q真,且p假,有<0或≥4,且,∴<0.
…………8分综上,实数的取值范围为(-∞,0)∪.
…………10分22.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育培训住宿指南
- 2019版广西师范版 高中体育与健康 必修 10~12年级中篇 运动实践《第一章 球类运动》大单元整体教学设计2020课标
- 《呼吸球囊》课件
- 产品质量回顾分析培训
- 大学生涯规划
- 小组工作的原则小组工作的基本概念
- 国庆假前安全培训
- 社会保险的功能与内涵
- 《江春水向东流》课件
- 大班语言活动快乐的纽扣
- 全国高中青年数学教师优质课大赛一等奖《函数的单调性》课件
- 积极应对媒体正确舆情引导培训讲义课件
- 人教版六年级英语上册(PEP)课件【全册】
- 运维开发人员KPI绩效考核方案
- 起重机日常维护保养方案
- 民法典讲座-继承篇
- 超级优等生:优等生最高效的学习方法
- 糖尿病健康知识宣教课件
- 教科版六年级英语上册(广州版)课件【全册】
- 大学生健康教育大学生性教育教学课件
- 医学-心脏骤停急救培训-心脏骤停急救教学课件
评论
0/150
提交评论