版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省云浮市富林中学2022高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C.D.2π参考答案:C【考点】棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).【分析】判断旋转后的几何体的形状,然后求解几何体的体积.【解答】解:由题意可知旋转后的几何体如图:将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为圆柱的体积减去圆锥的体积:=.故选:C.2.设顶点都在一个球面上的三棱柱的侧棱垂直于底面,所有棱的长都为2,则该球的表面积为()A.9π B.8π C. D.参考答案:D【考点】球的体积和表面积.【专题】计算题;方程思想;综合法;立体几何.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为2的正三棱柱,设上下底面中心连线EF的中点O,则O就是球心,其外接球的半径为OA1,又设D为A1C1中点,在直角三角形EDA1中,EA1==在直角三角形OEA1中,OE=1,由勾股定理得OA1==∴球的表面积为S=4π?=π,故选:D.【点评】本题考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.3.函数,的大致图像是
参考答案:C略4.圆上的点到直线的距离最大值是(
) A.2
B.1+
C.
D.1+参考答案:B5.已知某几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(A)cm3
(B)cm3(C)cm3
(D)cm3参考答案:C6.某空间几何体的三视图如下图所示,则该几何体的体积为(
)A.4+2π
B.2+6π
C.4+π
D.2+4π参考答案:D该几何体是一个三棱柱与一个圆柱的组合体,体积.
7.如果函数在区间上是减少的,那么实数的取值范围是(
)A、
B、
C、
D、
参考答案:C略8.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为()A. B. C. D.参考答案:D【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,再利用向量法求出异面直线AE与BF所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),=(﹣2,1,2),=(﹣2,0,1),设异面直线AE与BF所成角的平面角为θ,则cosθ===,∴异面直线AE与BF所成角的余弦值为.故选:D.【点睛】本题考查异面直线所成角的余弦值的求法,注意向量法的合理运用,属于基础题.9.已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(?RA)∩B=()A.A={0,1,2} B.{﹣2} C.{﹣1,0,1} D.{﹣2,﹣1}参考答案:D【考点】交、并、补集的混合运算.【分析】化简集合A、求出?RA,再计算(?RA)∩B即可.【解答】解:A={x|x+1>0}={x|x>﹣1},B={﹣2,﹣1,0,1},则?RA={x|x≤﹣1},(?RA)∩B={﹣2,﹣1}.故选:D.10.设两条直线的方程分别为已知是关于的方程的两个实数根,且0≤c≤,则这两条直线之间距离的最大值和最小值分别为()A.,
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.幂函数经过点,则该幂函数的解析式是__________.参考答案:设幂函数解析式为,∵幂函数经过点,∴,解得,故该幂函数的解析式是:.12.设Sn=1+2+3+…+n,n∈N*,则函数的最大值为.参考答案:考点:等差数列的前n项和;函数的最值及其几何意义.专题:计算题.分析:由题意求出Sn的表达式,将其代入代简后求其最值即可.解答:解:由题意Sn=1+2+3+…+n=∴===≤=等号当且仅当时成立故答案为点评:本题考查等差数列的前n项公式以及利用基本不等式求最值,求解本题的关键是将所得的关系式转化为可以利用基本不等式求最值的形式,利用基本不等式求最值是最值的一个比较常用的技巧,其特征是看是否具备:一正,二定,三相等.13.阅读下列一段材料,然后解答问题:对于任意实数,符号表示“不超过的最大整数”,在数轴上,当是整数,就是,当不是整数时,是点左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数;如,,;则的值为
参考答案:14.(5分)已知函数y=tan+,则函数的定义域是
.参考答案:{x|﹣4≤x≤4且x≠kπ+,k∈Z}考点: 函数的定义域及其求法.专题: 函数的性质及应用.分析: 根据三角函数的性质,结合二次根式的性质得到不等式组,解出即可.解答: 由题意得:,解得:﹣4≤x≤4且x≠kπ+,(k=﹣1,0,),故答案为:{x|﹣4≤x≤4且x≠kπ+,(k=﹣1,0)}.点评: 本题考查了三角函数的性质,考查了二次根式的性质,是一道基础题.15.数列{an}满足:a1=1,且对任意的m,n∈N,an+m=an+am+nm,则通项公式an=
。参考答案:16.有一道解三角形的题,因为纸张破损,在划横线地方有一个已知条件看不清.具体如下:在中角所对的边长分别为,已知角,,
,求角.若已知正确答案为,且必须使用所有已知条件才能解得,请你写出一个符合要求的已知条件.参考答案:(答案不唯一.但填写或者是错误的,不给分)略17.(5分)给出下列命题:①存在实数α,使sinα?cosα=1;②存在实数α,使;③函数是偶函数;④是函数的一条对称轴方程;⑤若α、β是第一象限的角,且α>β,则sinα>sinβ;其中正确命题的序号是
.参考答案:③④考点: 命题的真假判断与应用.专题: 计算题;综合题.分析: 由二倍角的正弦公式结合正弦的最大值为1,可得①不正确;利用辅助角公式,可得sinα+cosα的最大值为,小于,故②不正确;用诱导公式进行化简,结合余弦函数是R上的偶函数,得到③正确;根据y=Asin(ωx+?)图象对称轴的公式,可得④正确;通过举出反例,得到⑤不正确.由此得到正确答案.解答: 对于①,因为sinα?cosα=sin2α,故不存在实数α,使sinα?cosα=1,所以①不正确;对于②,因为≤,而,说明不存在实数α,使,所以②不正确;对于③,因为,而cosx是偶函数,所以函数是偶函数,故③正确;对于④,当时,函数的值为=﹣1为最小值,故是函数的一条对称轴方程,④正确;对于⑤,当α=、β=时,都是第一象限的角,且α>β,但sinα=<=sinβ,故⑤不正确.故答案为:③④点评: 本题以命题真假的判断为载体,考查了二倍角的正弦公式、三角函数的奇偶性和图象的对称轴等知识,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数对任意满足,,若当时,(且),且.(1)求实数的值;
(2)求函数的值域。参考答案:(1);(2).略19.设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(-1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.参考答案:(1)g(x)=x
(2)存在,a=c=,b=.【分析】(1)由题意可得c=1,进而得到f(x),可取g(x)=x;(2)假设存在常数a,b,c满足题意,令x=1,可得a+b+c=1,再由二次不等式恒成立问题解法,运用判别式小于等于0,化简整理,即可判断存在.【详解】(1)函数f(x)=ax2+bx+c的图象经过点(-1,0),可得a-b+c=0,又a=1,b=2,则f(x)=x2+2x+1,由新定义可得g(x)=x为函数f(x)的一个承托函数;(2)假设存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数.即有x≤ax2+bx+c≤x2+恒成立,令x=1可得1≤a+b+c≤1,即为a+b+c=1,即1-b=a+c,又ax2+(b-1)x+c≥0恒成立,可得a>0,且(b-1)2-4ac≤0,即为(a+c)2-4ac≤0,即有a=c;又(a-)x2+bx+c-≤0恒成立,可得a<,且b2-4(a-)(c-)≤0,即有(1-2a)2-4(a-)2≤0恒成立.故存在常数a,b,c,且0<a=c<,b=1-2a,可取a=c=,b=.满足题意.【点睛】本题考查新定义的理解和运用,考查不等式恒成立问题的解法,注意运用赋值法和判别式法,考查运算能力,属于中档题.20.(本小题满分12分)已知函数.(1)若函数有两个零点,求的取值范围;(2)若函数在区间与上各有一个零点,求的取值范围.参考答案:21.若不等式的解集是.()求实数的值.()求不等式ax2﹣5x+a2﹣1>0的解集.参考答案:【考点】77:一元二次不等式与一元二次方程;74:一元二次不等式的解法.【分析】()由二次不等式的解集形式,判断出,是相应方程的两个根,利用韦达定理求出的值.()由()我们易得的值,代入不等式易解出其解集.【解答】解:()∵的解集是,∴,,是的两根解得;()则不等式可化为,解得,故不等式的解集.22.已知直线l在y轴上的截距为﹣2,且垂直于直线x﹣2y﹣1=0.(1)求直线l的方程;(2)设直线l与两坐标轴分别交于A、B两点,△OAB内接于圆C,求圆C的一般方程.参考答案:【考点】直线与圆的位置关系.【分析】(1)设直线l的方程为y=kx﹣2,利用两直线垂直斜率相乘为﹣1来求出另一条直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年陕西省渭南市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年河南省周口市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2023年广东省清远市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年广东省梅州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 酒店服务质量管理条例
- 湖北省林业市场规范条例
- 《新农村户型图》课件
- 2023-2024一级建造师之一建水利水电工程实务重点知识点大全
- 单位管理制度精彩汇编【人事管理篇】十篇
- 单位管理制度集锦大全职工管理篇
- 象棋培训机构合伙协议
- 2025届贵州遵义市桐梓县数学七年级第一学期期末经典试题含解析
- 蓝色粮仓-水产学专业导论智慧树知到期末考试答案章节答案2024年中国海洋大学、山东大学、中国科学院海洋研究所、上海海洋大学、华中农业大学、大连海洋大学、集美大学
- (高清版)JTGT D31-06-2017 季节性冻土地区公路设计与施工技术规范
- 幼儿园健康体检活动方案及流程
- 二年级乘除法口算题计算练习大全2000题(可直接打印)
- 冰箱结构原理与维修
- 2024年交管12123学法减分考试题库及答案大全
- 湖南省长沙市2022-2023学年二年级上学期期末数学试题
- DB29-238-2024 城市综合管廊工程设计规范
- 湖南省印刷业挥发性有机物排放标准2017
评论
0/150
提交评论