版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年福建省福州市台江华伦中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数y=的定义域为R,则实数k的取值范围为(
)A.k<0或k>4 B.k≥4或k≤0 C.0≤k<4 D.0<k<4参考答案:C【考点】函数的定义域及其求法.【专题】计算题;分类讨论;函数的性质及应用.【分析】y=的定义域要使给出的分式函数定义域为实数集,是指对任意实数x分式的分母恒不等于0,对分母的二次三项式进行分类讨论,分k=0,和k≠0讨论,当k≠0时,需要二次三项式对应的二次方程的判别式小于0.【解答】解∵函数y=的定义域为R,∴kx2+kx+1对?x∈R恒不为零,当k=0时,kx2+kx+1=1≠0成立;当k≠0时,需△=k2﹣4k<0,解得0<k<4.综上,使函数的定义域为R的实数k的取值范围为[0,4).故选:C.【点评】本题是在知道函数的定义域的前提下求解参数的范围问题,考查了数学转化思想和分类讨论思想,解答此题时容易忽视k=0的情况导致解题出错,此题是基础题.2.函数的图象是()参考答案:D3.有下列命题:①年月日是国庆节,又是中秋节;②的倍数一定是的倍数;③梯形不是矩形;④方程的解。其中使用逻辑联结词的命题有(
)A.个
B.个
C.个
D.个参考答案:C
解析:①中有“且”;②中没有;③中有“非”;④中有“或”4.设(i为虚数单位),其中x,y是实数,则等于(
)A.5
B.
C.
D.2参考答案:A,,
5.在△ABC中,角A、B、C所对的边分别为a、b、c,且若,则△ABC的形状是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形参考答案:C【分析】直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选:C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.6.若集合M={y|y=2x,x∈R},P={x|y=},则M∩P=()(A)(1,+∞)
(B)[1,+∞)(C)(0,+∞)
(D)[0,+∞)参考答案:B7.某四棱锥的三视图如图所示,该四棱锥的体积为()A.9 B.2 C. D.3参考答案:D【考点】由三视图求面积、体积.【分析】根据三视图判断四棱锥的底面边长及四棱锥的高,把数据代入棱锥的体积公式计算.【解答】解:由三视图知:四棱锥的底面是边长为3的正方形,四棱锥的高为1,∴四棱锥的体积V=×32×1=3.故选:D.8.已知集合P={x|﹣4≤x≤4},Q={y|﹣2≤y≤2},则下列对应不能表示为从P到Q的函数的是()A.y=x B.y2=(x+4) C.y=x2﹣2 D.y=﹣x2参考答案:B【考点】函数的概念及其构成要素.
【专题】函数的性质及应用.【分析】根据函数的定义分别进行判断即可.【解答】解:集合P={x|﹣4≤x≤4},若y=x,则﹣2≤y≤2,满足函数的定义.若y2=(x+4),则x≠﹣4时,不满足对象的唯一性,不是函数.若y=x2﹣2,则﹣2≤y≤2,满足函数的定义.若y=﹣x2,则﹣2≤y≤0,满足函数的定义.故选:B.【点评】本题主要考查函数定义的判断,根据变量x的唯一性是解决本题的关键.9.设函数,则在下列区间中函数不存在零点的是(A)
(B)
(C)
(D)参考答案:A略10.已知函数,则方程g[f(x)]﹣a=0(a为正实数)的实数根最多有()个.A.6个 B.4个 C.7个 D.8个参考答案:A【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】利用导数求的f(x)的极大值为f(0)=1,极小值为f(2)=﹣3,且函数的值域为R.分a=1、0<a<1、a>1三种情况,研究方程跟的个数,从而得出结论.【解答】解:∵函数,令f′(x)=0可得x=0,x=2,在(﹣∞,0)上,f′(x)>0,f(x)是增函数;在(0,2)上,f′(x)<0,f(x)是减函数;在(2,+∞)上,f′(x)>0,f(x)是增函数.故f(x)的极大值为f(0)=1,极小值为f(2)=﹣3,且函数的值域为R.由函数g(x)的图象可得,当x=﹣3或x=时,g(x)=1.①当a=1时,若方程g[f(x)]﹣a=0,则:f(x)=﹣3,此时方程有2个根,或f(x)=,此时方程有3个根,故方程g[f(x)]﹣a=0可能共有5个根.②当0<a<1时,方程g[f(x)]﹣a=0,则:f(x)∈(﹣4,﹣3),此时方程有1个根,或f(x)∈(﹣3,﹣2),此时方程有3个根故方程g[f(x)]﹣a=0可能共有4个根.③当a>1时,方程g[f(x)]﹣a=0,则:f(x)∈(0,),或f(x)∈(,+∞),方程可能有4个、5个或6个根.故方程g[f(x)]﹣a=0(a为正实数)的实数根最多有6个,故选A.【点评】本题考查的知识点是根的存在性及根的个数判断,其中分析内外函数的图象是解答本题的关键,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则14分钟后P点距地面的高度是
米.参考答案:6略12.幂函数的图象经过点(4,2),那么的值是.参考答案:【考点】幂函数的概念、解析式、定义域、值域.【分析】先设出幂函数解析式来,再通过经过点(4,2),解得参数,从而求得其解析式,再代入求值.【解答】解:设幂函数为:y=xα∵幂函数的图象经过点(4,2),∴2=4α∴α=∴∴=故答案为:13.若曲线与直线有两交点,则实数的取值范围是____.参考答案:
14..若幂函数的图像过点,则
参考答案:2715.已知f(x)=,则f[f(1)]=8.如果f(x)=5,则x=.参考答案:﹣【考点】函数的值.【分析】先求出f(1)=2×12+1=3,从而f[f(1)]=f(3),由此能求出f[f(1)];由f(x)=5,得:当x>1时,f(x)=x+5=5;当x≤1时,f(x)=2x2+1=5,由此能求出x的值.【解答】解:∵f(x)=,∴f(1)=2×12+1=3,f[f(1)]=f(3)=3+5=8.∵f(x)=5,∴当x>1时,f(x)=x+5=5,解得x=0,不成立;当x≤1时,f(x)=2x2+1=5,解得x=﹣或x=(舍).综上,x=﹣.故答案为:8,﹣.16.已知向量满足,且,,则a与b的夹角为
参考答案:17.三个数390,455,546的最大公约数是
.参考答案:13【考点】WE:用辗转相除计算最大公约数.【分析】利用辗转相除法,先求出其中二个数390,455;455,546的最大公约数,之后我们易求出三个数390,455,546的最大公约数.【解答】解:455=390×1+65390=65×6∴390,455的最大公约数是65546=455×1+91455=91×5故455,546的最大公约数为91又65,91的最大公约数为13三个数390,455,546的最大公约数是13故答案为:13.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆满足:圆心在直线上,且与直线相切于点,求该圆的方程参考答案:设圆心,则略19.(本小题满分12分)已知函数
(1)求证:在上是增函数;
(2)若在区间上取得最大值为5,求实数的值.参考答案:(1)任取且
…………1分
…………3分
…………4分
…………5分上是增函数
…………6分(2)因为上单调递增
…………7分所以在上也单调递增
…………8分
…………10分解之得
…………12分
20.设数列{an}的前n项和为Sn.已知,,.(Ⅰ)设,求数列{bn}的通项公式;(Ⅱ)若,,求a的取值范围.参考答案:试题分析:(Ⅰ)依题意,,即,由此得,因此,.当时,为等比数列,首项是,公比,所求通项公式为,;当时,,,也适合上式,故数列的通项公式为;(Ⅱ)由通项可知,,当时,,,所以(),当n=1时再验证一下试题解析:(Ⅰ)依题意,,即,由此得,因此,.当时,为等比数列,首项是,公比,所求通项公式为,.①当时,,,也适合①.故数列的通项公式为,.(Ⅱ)由①知,,于是,当时,,,当时,.又.综上,所求的的取值范围是.考点:数列性质及其恒成立问题21.在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(Ⅰ)求证:A1C1⊥BC1;(Ⅱ)求证:AC1∥平面CDB1.参考答案:(1)
;由直三棱柱;;平面;平面,平面,平面,……………6分(2)连接相交于点O,连OD,易知//,平面,平面,故//平面.……………12分22.(12分)已知函数的定义域为,且对于定义域内的任何,都有成立,且。当时,.
(1)判断奇偶性;
(2)求在上的最小值和最大值.参考答案:解:(1)∵定义域{x|x≠kπ,k∈Z}关于原点对称,又f(-x)=f[(a-x)-a]======-f(x),对于定义域内的每个x值都成立∴f(x)为奇函数…4分(1)
先证明f(x)在[2a,3a]上单调递减,为此,必须证明x∈(2a,3a)时,f(x)<0,设2a<x<3a,则0<x-2a<a,∴f(x-2a)==->0,∴f(x)<0…………2分设2a<x1<x2<3a,则0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论