下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《回归分析的基本思想及其初步应用》教材解读1.重点通过实际操作进一步理解建立两相关变量的线性回归模型的思想;求线性回归方程;判断回归模型拟合的好坏。2.难点残差变量的解释与分析及指标R2的理解3.知识结构图4.思维总结(1)求回归直线方程的一般方法。①作出散点图,将问题所给的数据在平面直角坐标系中描点,这样表示出的具有相关关系的两个变量的一组数据的图形就是散点图,从散点图中我们可以看出样本点是否呈条状分布,从而判断两个变量是否线性相关。②求回归系数eq\o(a,\s\up6(^)),eq\o(b,\s\up6(^)),其中eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,)xi-\o(x,\s\up6(-))yi-\o(y,\s\up6(-)),\i\su(i=1,n,)xi-\o(x,\s\up6(-))2)=eq\f(\i\su(i=1,n,x)iyi-n\o(x,\s\up6(-))\o(y,\s\up6(-)),\i\su(i=1,n,x)\o\al(2,i)-n\o(x,\s\up6(-))2),eq\o(a,\s\up6(^))=eq\o(y,\s\up6(-))-eq\o(b,\s\up6(^))eq\o(x,\s\up6(-)).③写出回归直线方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),并用回归直线方程进行预报说明:当x取x0时,由线性回归方程可得y0的值,从而可进行相应的判断.(2)残差分析.①对于样本点(x1,y1),(x2,y2),…,(xn,yn),当我们用回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))中的eq\o(y,\s\up6(^))估计y=bx+a+e中的bx+a时,它们的随机误差是ei=yi-bxi-a(i=1,2,3,…,n).其估计值为eq\o(e,\s\up6(^))i=yi-eq\o(y,\s\up6(^))i=yi-eq\o(b,\s\up6(^))xi-eq\o(a,\s\up6(^))(i=1,2,…,n),则eq\o(e,\s\up6(^))i称为相应于点(xi,yi)的残差。②将eq\i\su(i=1,n,)(yi-eq\o(y,\s\up6(^))i)2称为残差平方和,残差平方和在一定程度上反映了所选回归模型的拟合效果.残差平方和越小,说明模型的拟合效果越好;残差平方和越大,说明拟合效果越差。③通过残差分析判断模型拟合效果:先计算出残差eq\o(e,\s\up6(^))i=yi-eq\o(y,\s\up6(^))i=yi-eq\o(b,\s\up6(^))xi-eq\o(a,\s\up6(^)),i=1,2,…,n,然后横坐标选取为样本编号、解释变量或预报变量,纵坐标为残差,作出残差图.通过图形分析,如果样本点的残差较大,就要分析样本数据的采集是否有错误;另一方面,可以通过残差点分布的水平带状区域的宽窄说明模型拟合效果,反映回归方程的预报精度.带状区域的宽度越窄,说明模型的拟合精度越高,回归方程的预报精度越高。(3)相关指数R2.①相关指数的计算公式是R2=1-,其中eq\i\su(i=1,n,)(yi-eq\o(y,\s\up6(^))i)2为残差平方和.相关指数用来刻画回归的效果,R2的值越大,说明模型的拟合效果越好;R2的值越小,说明拟合效果越差.②如果某组样本数据可以采取几种不同的回归模型进行回归分析,则可以通过比较R2的值来做出选择,即选择R2值大的模型作为这组数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年供应商原材料销售合同
- 2024年供应链协同补充合同
- 2024年医疗机构诊断耗材采购合同
- 2024年农产品增产助剂与化肥购销合同
- 2024年优化版个人房产抵押借款合同
- 2024年个人房屋交易合同
- 2024年光纤通信设备采购合同
- 2024年光缆器材购销协议
- 2024年子女抚养与赡养合同
- 2024年城市亮化工程承包合同
- VTE高危科室应急预案
- 《安全生产法培训课件》(2021版)
- 小学高年级《红楼春趣》剧本(宁波实验学校)
- 电网雷电预警技术研究及预警系统开发项目验收汇报
- 灌溉试验常规观测
- 水字的演变与含意
- 2023年高考化学反应原理专题复习《压强平衡常数》
- 人行道透水砖施工解决方案2445
- 2023年高考浙江卷英语试题(2023年1月考试-含听力音频、听力原文和答案)
- 高一上学期 期中考试后的家长会
- GB/Z 20423-2006液压系统总成清洁度检验
评论
0/150
提交评论