版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省梅州市普通高校对口单招高等数学一自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.A.A.充分非必要条件B.必要非充分条件C.充分必要条件D.无关条件
2.
3.在空间直角坐标系中方程y2=x表示的是
A.抛物线B.柱面C.椭球面D.平面
4.当x→0时,x是ln(1+x2)的
A.高阶无穷小B.同阶但不等价无穷小C.等价无穷小D.低阶无穷小
5.
6.
A.3(x+y)
B.3(x+y)2
C.6(x+y)
D.6(x+y)2
7.下列级数中发散的是()
A.
B.
C.
D.
8.
9.
A.2B.1C.1/2D.0
10.
11.
12.
13.
14.()。A.为无穷小B.为无穷大C.不存在,也不是无穷大D.为不定型
15.
16.曲线的水平渐近线的方程是()
A.y=2B.y=-2C.y=1D.y=-1
17.摇筛机如图所示,已知O1B=O2B=0.4m,O1O2=AB,杆O1A按
规律摆动,(式中∮以rad计,t以s计)。则当t=0和t=2s时,关于筛面中点M的速度和加速度就散不正确的一项为()。
A.当t=0时,筛面中点M的速度大小为15.7cm/s
B.当t=0时,筛面中点M的法向加速度大小为6.17cm/s2
C.当t=2s时,筛面中点M的速度大小为0
D.当t=2s时,筛面中点M的切向加速度大小为12.3cm/s2
18.设y=e-3x,则dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
19.A.A.
B.
C.
D.
20.设函数z=sin(xy2),则等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
二、填空题(20题)21.
22.幂级数的收敛区间为______.
23.
24.设函数f(x)有连续的二阶导数且f(0)=0,f'(0)=1,f''(0)=-2,则25.26.∫x(x2-5)4dx=________。27.过坐标原点且与平面2x-y+z+1=0平行的平面方程为______.
28.
29.
30.
31.
32.
33.
34.
35.设z=x2+y2-xy,则dz=__________。
36.
37.
38.39.设当x≠0时,在点x=0处连续,当x≠0时,F(x)=-f(x),则F(0)=______.
40.设y=f(x)在点x0处可导,且在点x0处取得极小值,则曲线y=f(x)在点(x0,f(x0))处的切线方程为________。
三、计算题(20题)41.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.42.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
43.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
44.证明:45.46.47.当x一0时f(x)与sin2x是等价无穷小量,则48.求函数f(x)=x3-3x+1的单调区间和极值.49.求曲线在点(1,3)处的切线方程.50.
51.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.
54.求微分方程的通解.55.将f(x)=e-2X展开为x的幂级数.56.57.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.58.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
59.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
60.
四、解答题(10题)61.
62.
63.64.
65.
66.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
67.
68.
69.求函数f(x,y)=e2x(x+y2+2y)的极值.
70.
五、高等数学(0题)71.
;D:x2+y2≤4。
六、解答题(0题)72.
参考答案
1.D
2.A
3.B解析:空间中曲线方程应为方程组,故A不正确;三元一次方程表示空间平面,故D不正确;空间中,缺少一维坐标的方程均表示柱面,可知应选B。
4.D解析:
5.B解析:
6.C
因此选C.
7.D
8.B
9.D本题考查的知识点为重要极限公式与无穷小量的性质.
10.D解析:
11.C解析:
12.B
13.C
14.D
15.D解析:
16.D
17.D
18.C
19.C
20.D本题考查的知识点为偏导数的运算。由z=sin(xy2),知可知应选D。
21.22.(-2,2);本题考查的知识点为幂级数的收敛区间.
由于所给级数为不缺项情形,
可知收敛半径,收敛区间为(-2,2).
23.(-33)(-3,3)解析:24.-1
25.
26.27.已知平面的法线向量n1=(2,-1,1),所求平面与已知平面平行,可设所求平面方程为2x-y+z+D=0,将x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程为2x-y+z=0.
28.
29.00解析:
30.
本题考查的知识点为二重积分的计算.
31.e2
32.
本题考查的知识点为二元函数的偏导数.
33.
34.本题考查的知识点为二重积分的直角坐标与极坐标转化问题。
35.(2x-y)dx+(2y-x)dy
36.
解析:37.
38.1/639.1本题考查的知识点为函数连续性的概念.
由连续性的定义可知,若F(x)在点x=0连续,则必有,由题设可知
40.y=f(x0)y=f(x)在点x0处可导,且y=f(x)有极小值f(x0),这意味着x0为f(x)的极小值点。由极值的必要条件可知,必有f"(x0)=0,因此曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)为所求切线方程。
41.
列表:
说明
42.
43.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
44.
45.
46.
47.由等价无穷小量的定义可知48.函数的定义域为
注意
49.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
50.
则
51.由一阶线性微分方程通解公式有
52.解:原方程对应的齐次方程为y"-4y'+4y=0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学提升训练试卷A卷附答案
- 2024年度山西省高校教师资格证之高等教育法规能力测试试卷A卷附答案
- 2024年微波集成电路AL2O3基片项目资金申请报告代可行性研究报告
- 四年级数学(四则混合运算)计算题专项练习与答案
- 2024年反担保协议法律文件样式
- 生态农业园建设项目可行性研究报告
- 2024年劳动协议监管手册内容概览
- 2024年期办公场所租赁协议模板
- 2024室内涂装批白施工服务协议
- 2024新装修工程项目协议
- 2024年国家机关事务管理局机关服务中心招聘历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 油漆作业风险和隐患辨识、评估分级与控制措施一览表
- 流体力学期末复习试题含答案(大学期末复习资料)
- HG∕T 5248-2017 风力发电机组叶片用环氧结构胶粘剂
- 内外部项目合作管理制度
- 输尿管软镜的手术操作
- 高血压病三级预防策略 医学类模板 医学课件
- 教师进企业实践日志
- 2024版新房屋装修贷款合同范本
- 15MW源网荷储一体化项目可行性研究报告写作模板-备案审批
- 北师大版二年级数学上册第五单元《2~5的乘法口诀》(大单元教学设计)
评论
0/150
提交评论