第5章时域离散系统的基本网络结构_第1页
第5章时域离散系统的基本网络结构_第2页
第5章时域离散系统的基本网络结构_第3页
第5章时域离散系统的基本网络结构_第4页
第5章时域离散系统的基本网络结构_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5章时域离散系统的基本网络结构与

状态变量分析法5.1引言5.2用信号流图表示网络结构5.3无限长脉冲响应基本网络结构5.4有限长脉冲响应基本网络结构5.5线性相位结构5.6频率与采样结构5.7格型网络结构

5.1引言

一般时域离散系统或网络可以用差分方程、单位脉冲响应以及系统函数进行描述。如果系统输入输出服从N阶差分方程其系统函数H(z)为

给定一个差分方程,不同的算法有很多种,例如:

5.2用信号流图表示网络结构

观察(5.1.1)式,数字信号处理中有三种基本算法,即乘法、加法和单位延迟,三种基本运算用流图表示如图5.2.1所示。图5.2.1三种基本运算的流图表示

和每个节点连接的有输入支路和输出支路,节点变量等于所有输入支路的输出之和。在图5.2.2中,(5.2.1)

图5.2.2信号流图(a)基本信号流图;(b)非基本信号流图

不同的信号流图代表不同的运算方法,而对于同一个系统函数可以有很多种信号流图相对应。从基本运算考虑,满足以下条件,称为基本信号流图(PrimitiveSignalFlowGraphs)。

(1)信号流图中所有支路都是基本的,即支路增益是常数或者是z-1;

(2)流图环路中必须存在延时支路;

(3)节点和支路的数目是有限的。根据信号流图可以求出网络的系统函数:首先列出各个节点变量方程,形成联立方程组,然后求输入和输出之间的z域关系。

例5.2.1求图5.2.2(a)信号流图决定的系统函数H(z)。解将5.2.1式进行z变换,得到四个中间变量,四个方程,经过联立求解得到:上述解联立方程组比较复杂,一般直接用Mason公式直接写出H(z)比较方便。FIR网络中一般不存在输出对输入的反馈支路,因此差分方程用下式描述:

其单位脉冲响应h(n)是有限长的,按照(5.2.2)式,h(n)表示为其它n

另一类IIR网络结构存在输出对输入的反馈支路,也就是说,信号流图中存在环路。这类网络的单位脉冲响应是无限长的。例如一个简单的一阶IIR网络差分方程为

y(n)=ay(n-1)+x(n)

其单位脉冲响应h(n)=anu(n)。这两类不同的网络结构各有不同的特点,下面分类叙述。

5.3无限长脉冲响应基本网络结构

1.直接型对N阶差分方程重写如下:对应的系统函数为:

图5.3.1IIR网络直接型结构(M=N=2)传递函数交换位置延时支路合并观察:实现本系统,需要一个加法器,个乘法器,个延迟器。

图5.3.1从(a)到(b)缺乏严格性,直接型信号流图的另外一种更合理说明:若将上图作一改造,可大量节约延迟器则:及直接实现:

例5.3.1IIR数字滤波器的系统函数H(z)为画出该滤波器的直接型结构。解由H(z)写出差分方程如下:图5.3.2例5.3.1图2.级联型在(5.1.2)式表示的系统函数H(z)中,公子分母均为多项式,且多项式的系数一般为实数,现将分子分母多项式分别进行因式分解(实数零、极点),得到(5.3.1)形成一个二阶网络Hj(z)(共轭成对复数零极点);Hj(z)如下式:(5.3.2)

式中,β0j、β1j、β2j、α1j和α2j均为实数。这H(z)就分解成一些一阶或二阶数字网络的级联形式,如下式:

H(z)=H1(z)H2(z)…Hk(z)(5.3.3)

式中Hi(z)表示一个一阶或二阶的数字网络的系统函数,每个Hi(z)的网络结构均采用前面介绍的直接型网络结构,如图5.3.3所示。

图5.3.3一阶和二阶直接型网络结构(a)直接型一阶网络结构;(b)直接型二阶网络结构例5.3.2设系统函数H(z)如下式:试画出其级联型网络结构。解将H(z)分子分母进行因式分解,得到

式中,Hi(z)通常为一阶网络和二阶网络,网络系统均为实数。二阶网络的系统函数一般为(5.3.4)

式中,β0i、β1i、α1i和α2i都是实数。如果a2i=0则构成一阶网络。由(5.3.4)式,其输出Y(z)表示为

Y(z)=H1(z)X(z)+H2(z)X(z)+…+Hk(z)X(z)3.并联型如果将级联形式的H(z),展开部分分式形式,得到IIR并联型结构。

例5.3.3画出例题5.3.2中的H(z)的并联型结构。解将例5.3.2中H(z)展成部分分式形式:

将每一部分用直接型结构实现,其并联型网络结构如图5.3.5所示。

图5.3.5例5.3.3图

5.4有限长脉冲响应基本网络结构

FIR网络结构特点是没有反馈支路,即没有环路,其单位脉冲响应是有限长的。设单位脉冲响应h(n)长度为N,其系统函数H(z)和差分方程为1.直接型按照H(z)或者差分方程直接画出结构图如图5.4.1所示。这种结构称为直接型网络结构或者称为卷积型结构。

图5.4.1FIR直接型网络结构2.级联型将H(z)进行因式分解,并将共轭成对的零点放在一起,形成一个系数为实数的二阶形式,这样级联型网络结构就是由一阶或二阶因子构成的级联结构,其中每一个因式都用直接型实现。例5.4.1设FIR网络系统函数H(z)如下式:

H(z)=0.96+2.0z-1+2.8z-2+1.5z-3

画出H(z)的直接型结构和级联型结构。

解将H(z)进行因式分解,得到:

H(z)=(0.6+0.5z-1)(1.6+2z-1+3z-2)

其级联型结构和直接型结构如图5.4.2所示。图5.4.2例5.4.1图5、线性相位FIR滤波器的结构FIR滤波器单位抽样响应h(n)为实数,且满足:偶对称:或奇对称:即对称中心在(N-1)/2处则这种FIR滤波器具有严格线性相位。N为奇数时h(n)偶对称,取“+”(称为第一类线性相位滤波器)h(n)奇对称,取“”,且第二类线性相位滤波器N为偶数时5.6频率采样结构频率域等间隔采样,相应的时域信号会以采样点数为周期进行周期性延拓,如果在频率域采样点数N大于等于原序列的长度M,则不会引起信号失真,此时原序列的z变换H(z)与频域采样值H(k)满足下面关系式:设FIR滤皮器单位脉冲响应h(n)长度为M,系统函数H(z)=ZT[h(n)],(5.4.1)式中H(k)用下式表示:

(5.4.1)

要求频率域采样点数N≥M。(5.4.1)式提供了一种称为频率采样的FIR网络结构。请读者分析IIR滤波网络,为什么不采用频率采样结构。将(5.4.1)式写成下式:(5.4.2)式中Hc(z)是一个梳状滤皮网络(参考第八章),其零点为图5.4.3FIR滤波器频率采样结构(1)在频率采样点ωk,H(ejωk)=H(k),只要调整H(k)(即一阶网络Hk(z)中乘法器的系数H(k)),就可以有效地调整频响特性,使实际调整方便。

(2)只要h(n)长度N相同,对于任何频响形状,其梳状滤波器部分和N一阶网络部分结构完全相同,只是各支路增益H(k)不同。这样,相同部分便于标准化、模块化。

然而,上述频率采样结构亦有两个缺点:

(1)系统稳定是靠位于单位圆上的N个零极点对消来保证的。

(2)结构中,H(k)和W-kN一般为复数,要求乘法器完成复数乘法运算,这对硬件实现是不方便的。为了克服上述缺点,对频率采样结构作以下修正。首先将单位圆上的零极点向单位圆内收缩一点,收缩到半径为r的圆上,取r<1且r≈1。此时H(z)为(5.4.3)此时零极点不能完全对消时,系统也是稳定的

另外,由DFT的共轭对称性知道,如果h(n)是实数序列,则其离散傅里叶变换H(k)关于N/2点共轭对称,即H(k)=H*(N-k)。而且W-kN=W(N-k)N,我们将hk(z)和

HN-k(z)合并为一个二阶网络,并记为Hk(z),则

显然,二阶网络Hk(z)的系数都为实数,其结构如图5.4.4(a)所示。当N为偶数时,h(z)可表示为式中(5.4.4)

式中,H(0)和H(N/2)为实数。(5.4.4)式对应的频率采样修正结构由N/2-1个二阶网络和两个一阶网络并联构成,如图5.4.4(b)所示。图5.4.4频率采样修正结构

当N=奇数时,只有一个采样值H(0)为实数,H(z)可表示为(5.4.5)5.7离散时间系统的Lattice结构Lattice结构又称“格形”结构,是一种非常新颖、有特色的结构,在基于模型的功率谱估计、语音信号处理、自适应滤波方面有着重要的应用。对一个FIR系统,其Lattice结构是:反射系数Lattice结构的基本单元1.全零点系统(FIR)的Lattice结构如何实现滤波器系数和的相互转换?定义:Lattice结构中的基本关系:是Lattice结构中第m个上、下结点相对输入端的转移函数。得到由低阶倒高阶,或由高到低的递推关系。得到时域递推关系:低到高阶高到低阶MATLAB中有相应的m文件(tf2latc)。例:看作是FIR系统的逆形式。2.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论