因子分析课件教学资料_第1页
因子分析课件教学资料_第2页
因子分析课件教学资料_第3页
因子分析课件教学资料_第4页
因子分析课件教学资料_第5页
已阅读5页,还剩73页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

因子分析

FactorAnalysis

第一页,共78页。因子分析的基本(jīběn)理论1、什么是因子分析?因子分析是主成分分析的推广,也是利用降维的思想,由研究原始变量相关矩阵或协方差矩阵的内部依赖关系出发,把一些具有错综复杂关系的多个变量归结为少数几个综合因子的一种多元统计分析方法(fāngfǎ)。2、因子分析的基本思想:把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子。第二页,共78页。因子分析的基本(jīběn)理论3、因子分析的目的:因子分析的目的之一,简化变量维数。即要使因素结构简单化,希望以最少的共同(gòngtóng)因素(公共因子),能对总变异量作最大的解释,因而抽取得因子愈少愈好,但抽取因子的累积解释的变异量愈大愈好。在因子分析的公共因子抽取中,应最先抽取特征值最大的公共因子,其次是次大者,最后抽取公共因子的特征值最小,通常会接近0。第三页,共78页。因子分析的基本(jīběn)理论例:在企业形象或品牌形象的研究中,消费者可以通过一个有24个指标构成的评价体系,评价百货商场的24个方面的优劣。但消费者主要关心的是三个方面,即商店的环境、商店的服务和商品的价格。因子分析方法可以通过24个变量,找出反映商店环境、商店服务水平和商品价格的三个潜在的因子,对商店进行综合评价。而这三个公共因子可以表示为:称是不可观测(guāncè)的潜在因子,称为公共因子。24个变量共享这三个因子,但是每个变量又有自己的个性,不被包含的部分,称为特殊因子。第四页,共78页。因子分析的基本(jīběn)理论4、主成分分析分析与因子(yīnzǐ)分析的联系和差异:联系:(1)因子(yīnzǐ)分析是主成分分析的推广,是主成分分析的逆问题。(2)二者都是以‘降维’为目的,都是从协方差矩阵或相关系数矩阵出发。区别:(1)主成分分析模型是原始变量的线性组合,是将原始变量加以综合、归纳,仅仅是变量变换;而因子(yīnzǐ)分析是将原始变量加以分解,描述原始变量协方差矩阵结构的模型;只有当提取的公因子(yīnzǐ)个数等于原始变量个数时,因子(yīnzǐ)分析才对应变量变换。(2)主成分分析,中每个主成分对应的系数是唯一确定的;因子(yīnzǐ)分析中每个因子(yīnzǐ)的相应系数即因子(yīnzǐ)载荷不是唯一的。(3)因子(yīnzǐ)分析中因子(yīnzǐ)载荷的不唯一性有利于对公因子(yīnzǐ)进行有效解释;而主成分分析对提取的主成分的解释能力有限。第五页,共78页。因子分析的基本(jīběn)理论5、因子分析模型(móxíng):

设个变量,如果表示为第六页,共78页。(1)(2)

称为公共因子,是不可观测的变量,他们的系数称为因子载荷。是特殊因子,是不能被前m个公共因子包含的部分。其中:相互独立即不相关;即互不相关,方差为1。第七页,共78页。(3)即互不相关,方差不一定相等,。满足以上条件的,称为正交因子模型.如果(2)不成立,即,各公共因子之间不独立,则因子分析模型为斜交因子模型.第八页,共78页。公因子F1公因子F2共同度hi特殊因子δix1=代数10.8960.3410.9190.081x2=代数20.8020.4960.8890.111x3=几何0.5160.8550.9970.003x4=三角0.8410.4440.9040.096x5=解析几何0.8330.4340.8820.118特征值G3.1131.4794.9590.409方差贡献率(变异量)62.26%29.58%91.85%因子分析案例(ànlì)F1体现逻辑思维和运算(yùnsuàn)能力,F2体现空间思维和推理能力第九页,共78页。因子分析的基本(jīběn)理论6、因子(yīnzǐ)分析模型中的几个重要统计量的意义:(1)因子(yīnzǐ)负荷量(或称因子(yīnzǐ)载荷)----是指因子(yīnzǐ)结构中原始变量与因子(yīnzǐ)分析时抽取出的公共因子(yīnzǐ)的相关程度。第十页,共78页。在各公共因子不相关(xiāngguān)的前提下,(载荷矩阵中第i行,第j列的元素)是随机变量xi*与公共因子Fj的相关(xiāngguān)系数,表示xi*依赖于Fj的程度。反映了第i个原始变量在第j个公共因子上的相对重要性。因此绝对值越大,则公共因子Fj与原有变量xi的关系越强。第十一页,共78页。(2)共同度----又称共性方差(fānɡchà)或公因子方差(fānɡchà)(community或commonvariance)就是变量与每个公共因子之负荷量的平方总和(一行中所有因素负荷量的平方和)。变量的共同度是因子载荷矩阵的第i行的元素的平方和。记为

从共同性的大小可以判断这个原始实测变量与公共因子间之关系程度。如因子分析案例中共同度h12=0.8962+0.3412=0.919特殊因子方差(fānɡchà)(剩余方差(fānɡchà))----各变量的特殊因素影响大小就是1减掉该变量共同度的值。如=1-0.919=0.081第十二页,共78页。(3)特征值----是第j个公共因子Fj对于X*的每一分量(fènliàng)Xi*所提供的方差的总和。又称第j个公共因子的方差贡献。即每个变量与某一共同因素之因素负荷量的平方总和(因子载荷矩阵中某一公共因子列所有因子负荷量的平方和)。如因子分析案例中F1的特征值G=(0.896)平方+(0.802)平方+(0.516)平方+(0.841)平方+(0.833)平方=3.113(4)方差贡献率----指公共因子对实测变量的贡献,又称变异量方差贡献率=特征值G/实测变量数p,是衡量公共因子相对重要性的指标,Gi越大,表明公共因子Fj对X*的贡献越大,该因子的重要程度越高如因子分析案例中F1的贡献率为3.113/5=62.26%第十三页,共78页。因子的基本(jīběn)内容1、因子分析的基本(jīběn)步骤:(1)因子分析的前提条件鉴定考察原始变量之间是否存在较强的相关关系,是否适合进行因子分析。因为:因子分析的主要任务之一就是对原有变量中信息重叠的部分提取和综合成因子,最终实现减少变量个数的目的。所以要求原有变量之间应存在较强的相关关系。否则,如果原有变量相互独立,不存在信息重叠,也就无需进行综合和因子分析。(2)因子提取研究如何在样本数据的基础上提取综合因子。第十四页,共78页。(3)因子(yīnzǐ)旋转通过正交旋转或斜交旋转使提取出的因子(yīnzǐ)具有可解释性。(4)计算因子(yīnzǐ)得分通过各种方法求解各样本在各因子(yīnzǐ)上的得分,为进一步分析奠定基础。第十五页,共78页。2、因子分析前提条件——相关性分析:分析方法主要有:(1)计算相关系数矩阵(jǔzhèn)(correlationcoefficientsmatrix)如果相关系数矩阵(jǔzhèn)中的大部分相关系数值均小于0.3,即各变量间大多为弱相关,原则上这些变量不适合进行因子分析。(2)计算反映象相关矩阵(jǔzhèn)(Anti-imagecorrelationmatrix)第十六页,共78页。(3)巴特利特球度检验(jiǎnyàn)(Bartletttestofsphericity)该检验(jiǎnyàn)以原有变量的相关系数矩阵为出发点,其零假设H0是:相关系数矩阵为单位矩阵,即相关系数矩阵主对角元素均为1,非主对角元素均为0。(即原始变量之间无相关关系)。

第十七页,共78页。(4)KMO(Kaiser-Meyer-Olkin)检验KMO检验的统计量是用于比较变量间简单相关系数矩阵和偏相关系数的指标,数学(shùxué)定义为:KMO值越接近1,意味着变量间的相关性越强,原有变量适合做因子分析;越接近0,意味变量间的相关性越弱,越不适合作因子分析。Kaiser给出的KMO度量标准:0.9以上非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合。第十八页,共78页。3、因子提取和因子载荷矩阵的求解(qiújiě):因子载荷矩阵求解(qiújiě)的方法:(1)基于主成分模型的主成分分析法(2)基于因子分析模型的主轴因子法(3)极大似然法(4)最小二乘法(5)a因子提取法(6)映象分析法第十九页,共78页。(1)基于主成分(chéngfèn)模型的主成分(chéngfèn)分析法Principalcomponents设随机向量的均值(jūnzhí)为,协方差为,为的特征根,为对应的标准化特征向量,则第二十页,共78页。上式给出的表达式是精确的,然而,它实际上是毫无价值的,因为我们(wǒmen)的目的是寻求用少数几个公共因子解释,故略去后面的p-m项的贡献,有:第二十一页,共78页。上式有一个假定,模型中的特殊因子(yīnzǐ)是不重要的,因而从的分解中忽略了特殊因子(yīnzǐ)的方差。第二十二页,共78页。(2)基于因子分析模型的主轴(zhǔzhóu)因子法Principalaxisfactoring是对主成分方法的修正,假定我们首先对变量进行标准化变换。则R=AA’+DR*=AA’=R-D称R*为约相关矩阵,R*对角线上的元素是,而不是1。第二十三页,共78页。直接求R*的前p个特征根和对应(duìyìng)的正交特征向量。得如下的矩阵:第二十四页,共78页。当特殊因子的方差已知:第二十五页,共78页。4、因子旋转:为什么要旋转因子?建立了因子分析数学目的不仅仅要找出公共因子以及对变量进行分组,更重要的要知道每个公共因子的意义,以便进行进一步的分析,如果每个公共因子的含义不清,则不便于进行实际背景的解释。由于因子载荷(zàihè)阵是不惟一的,所以应该对因子载荷(zàihè)阵进行旋转。目的是使每个变量在尽可能少的因子上有比较高的载荷(zàihè),让某个变量在某个因子上的载荷(zàihè)趋于1,而在其他因子上的载荷(zàihè)趋于0。即:使载荷(zàihè)矩阵每列或行的元素平方值向0和1两极分化。第二十六页,共78页。奥运会十项全能运动项目(xiàngmù)得分数据的因子分析百米跑成绩跳远成绩铅球成绩跳高成绩400米跑成绩百米跨栏铁饼成绩撑杆跳远成绩标枪成绩1500米跑成绩第二十七页,共78页。相关矩阵第二十八页,共78页。因

因子载荷矩阵可以看出,除第一因子在所有的变量(biànliàng)在公共因子上有较大的正载荷,可以称为一般运动因子。其他的3个因子不太容易解释。似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是考虑旋转因子,得下表第二十九页,共78页。旋转变幻(biànhuàn)后因子载荷矩阵第三十页,共78页。通过旋转,因子有了较为明确(míngquè)的含义。百米跑,跳远和400米跑,需要爆发力的项目在有较大的载荷,可以称为短跑速度因子;铅球,铁饼和标枪在上有较大的载荷,可以称为爆发性臂力因子;百米跨栏,撑杆跳远,跳远和为跳高在上有较大的载荷,爆发腿力因子;长跑耐力因子。第三十一页,共78页。旋转的方法有:(1)正交旋转;(2)斜交旋转(1)正交旋转由初始载荷矩阵A左乘一正交矩阵得到;目的(mùdì)是新的载荷系数尽可能的接近于0或尽可能的远离0;只是在旋转后的新的公因子仍保持独立性。主要有以下方法:varimax:方差最大旋转。简化对因子的解释quartmax:四次最大正交旋转。简化对变量的解释equamax:等量正交旋转第三十二页,共78页。A、方差最大法方差最大法从简化因子载荷矩阵(jǔzhèn)的每一列出发,使和每个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子上有较高的载荷时,对因子的解释最简单。方差最大的直观意义是希望通过因子旋转后,使每个因子上的载荷尽量拉开距离,一部分的载荷趋于1,另一部分趋于0。第三十三页,共78页。B、四次方最大旋转四次方最大旋转是从简化载荷矩阵的行出发,通过旋转初始因子,使每个变量只在一个因子上有较高的载荷,而在其它的因子上尽可能低的载荷。如果每个变量只在一个因子上有非零的载荷,这时的因子解释是最简单的。四次方最大法通过使因子载荷矩阵中每一行的因子载荷平方的方差(fānɡchà)达到最大。第三十四页,共78页。C、等量最大法等量最大法把四次方最大法和方差最大法结合起来求行和列因子载荷(zàihè)平方的方差的加权平均最大。第三十五页,共78页。(2)斜交旋转目的是新的载荷系数尽可能的接近于0或尽可能的远离0;只是在旋转时,放弃了因子之间彼此独立(dúlì)的限制,旋转后的新公因子更容易解释。主要有以下的方法:directoblimin:直接斜交旋转。允许因子之间具有相关性;promax:斜交旋转方法。允许因子之间具有相关性;第三十六页,共78页。5、因子(yīnzǐ)得分因子(yīnzǐ)得分的概念前面我们主要解决了用公共因子(yīnzǐ)的线性组合来表示一组观测变量的有关问题。如果我们要使用这些因子(yīnzǐ)做其他的研究,比如把得到的因子(yīnzǐ)作为自变量来做回归分析,对样本进行分类或评价,这就需要我们对公共因子(yīnzǐ)进行测度,即给出公共因子(yīnzǐ)的值。第三十七页,共78页。例:人均要素(yàosù)变量因子分析。对我国32个省市自治区的要素(yàosù)状况作因子分析。指标体系中有如下指标:X1:人口(万人)X2:面积(万平方公里)X3:GDP(亿元)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)X6:万人拥有的大学生数(人)X7:万人拥有科学家、工程师数(人)

RotatedFactorPatternFACTOR1FACTOR2FACTOR3X1-0.21522-0.273970.89092X20.63973-0.28739-0.28755X3-0.157910.063340.94855X40.95898-0.01501-0.07556X50.97224-0.06778-0.17535X6-0.114160.98328-0.08300X7-0.110410.97851-0.07246第三十八页,共78页。X1=-0.21522F1-0.27397F2+0.89092F3X2=0.63973F1-0.28739F2-0.28755F3X3=-0.15791F1+0.06334F2+0.94855F3X4=0.95898F1-0.01501F2-0.07556F3X5=0.97224F1-0.06778F2-0.17535F3X6=-0.11416F1+0.98328F2-0.08300F3X7=-0.11041F1+0.97851F2-0.07246F3第三十九页,共78页。

高载荷指标

因子命名

因子1X2;面积(万平方公里)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)自然资源因子

因子2X6:万人拥有的大学生数(人)X7:万人拥有的科学家、工程师数(人)

人力资源因子

因子3

X1;人口(万人)X3:GDP(亿元)经济发展总量因子

第四十页,共78页。StandardizedScoringCoefficients

FACTOR1

FACTOR2

FACTOR3X10.05764

-0.06098

0.50391X20.22724

-0.09901

-0.07713X30.14635

0.12957

0.59715X40.47920

0.11228

0.17062X50.45583

0.07419

0.10129X60.05416

0.48629

0.04099X70.05790

0.48562

0.04822F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X7第四十一页,共78页。前三个因子(yīnzǐ)得分REGION

FACTOR1FACTOR2FACTOR3beijing©-0.081694.23473-0.37983tianjin-0.474221.31789-0.87891hebei-0.22192-0.358020.86263shanxi1-0.48214-0.32643-0.54219neimeng0.54446-0.66668-0.92621liaoning-0.205110.463770.34087jilin-0.214990.10608-0.57431heilongj0.10839-0.11717-0.02219shanghai-0.200692.38962-0.04259第四十二页,共78页。案例(ànlì)分析:国民生活质量的因素分析国家发展的最终目标,是为了全面提高全体国民的生活质量,满足广大国民日益增长的物质和文化的合理需求。在可持续发展消费的统一理念下,增加社会财富,创造更多的物质文明和精神文明,保持人类的健康延续和生生不息,在人类与自然协同进化的基础上,维系人类与自然的平衡,达到完整的代际公平和区际公平(即时间(shíjiān)过程的最大合理性与空间分布的最大合理化)。从1990年开始,联合国开发计划署(UYNP)首次采用“人文发展系数”指标对于国民生活质量进行测度。人文发展系数利用三类内涵丰富的指标组合,即人的健康状况(使用出生时的人均预期寿命表达)、人的智力程度(使用组合的教育成就表达)、人的福利水平(使用人均国民收入或人均GDP表达),并且特别强调三类指标组合的整体表达内涵,去衡量一个国家或地区的社会发展总体状况以及国民生活质量的总水平。第四十三页,共78页。在这个指标体系中有如下的指标:X1——预期寿命X2——成人识字率X3——综合入学率X4——人均GDP(美圆)X5——预期寿命指数X6——教育(jiàoyù)成就指数X7——人均GDP指数第四十四页,共78页。旋转后的因子结构RotatedFactorPatternFACTOR1FACTOR2FACTOR3X10.381290.417650.81714X20.121660.848280.45981X30.648030.618220.22398X40.904100.205310.34100X50.388540.432950.80848X60.282070.853250.43289X70.900910.206120.35052FACTOR1为经济发展因子FACTOR2为教育成就(chéngjiù)因子FACTOR3为健康水平因子第四十五页,共78页。被每个因子解释(jiěshì)的方差和共同度:VarianceexplainedbyeachfactorFACTOR1FACTOR2FACTOR32.4397002.2763172.009490FinalCommunalityEstimates:Total=6.725507X1X2X3X4X50.9875300.9457960.8523060.9758300.992050X6X70.9949950.976999第四十六页,共78页。StandardizedScoringCoefficients标准化得分(défēn)系数FACTOR1FACTOR2FACTOR3X1-0.18875-0.343970.85077X2-0.241090.60335-0.10234X30.354620.50232-0.59895X40.53990-0.17336-0.10355X5-0.17918-0.316040.81490X6-0.092300.62258-0.24876第四十七页,共78页。生育率的影响因素分析生育率受社会、经济、文化、计划生育政策等很多因素影响,但这些因素对生育率的影响并不是完全独立的,而是交织在一起,如果直接用选定的变量对生育率进行多元回归分析,最终结果往往只能保留两三个变量,其他变量的信息就损失了。因此,考虑用因子分析的方法,找出变量间的数据结构,在信息损失最少的情况下用新生成的因子对生育率进行分析。选择的变量有:多子率、综合(zōnghé)节育率、初中以上文化程度比例、城镇人口比例、人均国民收入。下表是1990年中国30个省、自治区、直辖市的数据。第四十八页,共78页。第四十九页,共78页。特征根与各因子(yīnzǐ)的贡献EigenvalueDifferenceProportionCumulative3.249175972.034642910.64980.64981.214533060.962968000.24290.89270.251565070.067433970.05030.94310.184131090.083536290.03680.97990.100594800.0201

1.0000第五十页,共78页。没有旋转的因子(yīnzǐ)结构

Factor1Factor2x1-0.760620.55316x20.56898-0.76662x30.891840.25374x40.870660.34618x50.890760.36962第五十一页,共78页。各旋转后的共同度0.884540230.911439980.859770610.877894530.93006369Factor1可解释方差Factor2可解释方差2.99754292.1642615第五十二页,共78页。在这个例子中我们得到了两个因子,第一个因子是社会经济发展(fāzhǎn)水平因子,第二个是计划生育因子。有了因子得分值后,则可以利用因子得分为变量,进行其他的统计分析。

Factor1Factor2x1-0.35310-0.87170x20.077570.95154x30.891140.25621x40.922040.16655x50.951490.15728

Factor1Factor2x1-0.05897-0.49252x2-0.058050.58056x30.330420.03497x40.35108-0.02506x50.36366-0.03493方差最大旋转(xuánzhuǎn)后的因子结构标准化得分(défēn)函数第五十三页,共78页。案例分析:学习(xuéxí)途经调查情况问题题项从未使用很少使用有时使用经常使用总是使用12345A1电脑A2录音磁带A3录像带A4网上资料A5校园网或因特网A6电子邮件A7电子讨论网A8CAI课件A9视频会议A10视听会议第五十四页,共78页。题目编号A1A2A3A4A5A6A7A8A9A10011551111111022552221211034333431411044344442422054433441411064333342321074444332411081531111111094454442411105435543533115434442522125454443522133552221311145343332522154553332522164444351411175445554544185442341511195455553533205445552521第五十五页,共78页。(01)建立(jiànlì)数据文件第五十六页,共78页。(02)选择分析变量(biànliàng)——选SPSS[Analyze]菜单中的(DataReduction)→(Factor),出现【FactorAnalysis】对话框;——在【FactorAnalysis】对话框中左边的原始变量(biànliàng)中,选择将进行因子分析的变量(biànliàng)选入(Variables)栏。第五十七页,共78页。(03)设置描述性统计量——在【FactorAnalysis】框中选【Descriptives】按钮,出现(chūxiàn)【Descriptives】对话框;——选择Initialsolution(未转轴的统计量)选项——选择KMO选项——点击(Contiue)按钮确定。第五十八页,共78页。第五十九页,共78页。(04)设置对因子的抽取选项——在【FactorAnalysis】框中点击(diǎnjī)【Extraction】按钮,出现【FactorAnalysis:Extraction】对话框;——在Method栏中选择(Principalcomponents)选项;——在Analyze栏中选择Correlationmatrix选项;——在Display栏中选择Unrotatedfactorsolution选项;——在Extract栏中选择Eigenvaluesover并填上1;——点击(diǎnjī)(Contiue)按钮确定,回到【FactorAnalysis】对话框中。第六十页,共78页。第六十一页,共78页。第六十二页,共78页。(05)设置因子转轴——在【FactorAnalysis】对话框中,点击(diǎnjī)【Rotation】按钮,出现【FactorAnalysis:Rotation】(因子分析:旋转)对话框。——在Method栏中选择Varimax(最大变异法)——在Display栏中选择Rotatedsolution(转轴后的解)——点击(diǎnjī)(Contiue)按钮确定,回到【FactorAnalysis】对话框中。第六十三页,共78页。第六十四页,共78页。(06)设置(shèzhì)因素分数——在【FactorAnalysis】对话框中,点击【Scores】按钮,出现【FactorAnalysis:Scores】(因素分析:分数)对话框。——一般取默认值。——点击(Contiue)按钮确定,回到【FactorAnalysis】对话框。第六十五页,共78页。第六十六页,共78页。(07)设置因子分析的选项——在【FactorAnalysis】对话框中,单击【Options】按钮,出现【FactorAnalysis:Options】(因素分析:选项)对话框。——在MissingValues栏中选择Excludecaseslistwise(完全排除缺失值)——在Coefficient

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论