




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023/1/141Chapter2.
KeyExchangeProtocols2023/1/142MathematicalPreliminariesGroupsThroughout,Gndenotesacyclicgroupoffiniteordern,writtenmultiplicatively.Usually,butnotnecessarily,thegroupordernisprime.Recallthatanygroupofprimeorderiscyclic,andthatanyfinitecyclicgroupisabelian.Also,Gn=<g>,wheregisanygenerator(i.e.,anelementofordern)ofGn;thus,theelementsofGnareenumeratedas1,g,g2,g3,...,gn-1.Often,wewriteGasashorthandforGn.ThediscretelogofanelementyGisdefinedastheleastnonnegativeintegerxsatisfyingy=gx.Wewritex=loggy.ForyG,weletord(y)denoteitsorder.Notethatord(y)|n.2023/1/1432023/1/144MathematicalPreliminariesProbabilityThroughout,wewillusebasicnotionsfromprobabilitytheory,suchassamplespace,events,probability
distributions,andrandomvariables.Wewillonlybeconcernedwithdiscreterandomvariables.Specifically,weusethefollowingnotionofstatisticaldistance.DefinitionNote2023/1/145MathematicalPreliminariesThestatisticaldistanceisametricinthefollowingsense:2023/1/146DiscreteLogandDie-HellmanAssumptionsThefollowingthreeassumptionsarecommonlyusedincryptographicschemesbasedonadiscretelogsetting.Assumption2.1TheDiscreteLogarithm
(DL)assumptionforgroupGstatesthatitishardtocomputexgivengeneratorgandrandomgroupelementgx.Assumption2.2The(Computational)Diffie-Hellman(DH)assumptionforgroupGstatesthatitishardtocomputegxygivengeneratorgandrandomgroupelementsgx,gy.Assumption2.3TheDecisionDiffie-Hellman(DDH)assumptionforgroupGstatesthatitishardtodecidewhetherzxymodngivengeneratorgandrandomgroupelementsgx,gy,gz.2023/1/147ProbabilisticPolynomialTime(p.p.t.)AlgorithmAn(deterministic)algorithmisawell-definedcomputationalprocedurethattakesavariableinputandhaltswithanoutput.Aprobabilisticalgorithmissuchacomputationalprocedurethatmayfailwithoutanoutput,theprobabilityoffailurecanbecontrolledtoadequatelysmall.Thesizeoftheinputisthetotalnumberofbitsneededtorepresenttheinputinordinarybinarynotationusinganappropriateencodingscheme.Apolynomial-timealgorithmisanalgorithmwhoseworst-caserunningtimefunctionisoftheformO(nk),wherenistheinputsizeandkisaconstant.Aprobabilisticpolynomial-timealgorithmissimilarlydefined.2023/1/148DiscreteLogandDiffie-HellmanAssumptionsEachassumptionstatesthatitishardtosolveaparticularproblem.Informally,‘hard’meansthatanyprobabilisticpolynomialtime(p.p.t.)algorithmonlysucceedswithnegligibleprobabilityincomputingthecorrectoutput.Evidently,theseassumptionssatisfy:DLDHDDH.ThereforeitisbetterifaprotocolcanbeprovedsecureunderjusttheDLassumption.Itturnsout,however,thatinmanycasesthesecuritycanonlybeprovedundertheDHassumption,orevenonlyundertheDDHassumption.2023/1/149RandomSelf-ReducibilityDefinition1.13Aproblemiscalledrandomself-reducibleifanyinstanceIoftheproblemcanbesolvedby:(i)transforminginstanceIintooneormore(uncorrelated)uniformly-randominstancesI’,(ii)solvinginstancesI’,(iii)extractingtheanswerforIfromtheanswersforI’.Steps(i)and(ii)arerequiredtoruninpolynomialtime.TheDL,DHandDDHproblemsarerandomself-reducible.ThisisimmediatefortheDLproblem:givenanyinstancey=gx,(i)transformytoy’=ygrwithrRZn,(ii)solvetherandominstancey’forx’=loggy’,and(iii)extractthesolutionasx=loggh=x’-rmodn.2023/1/1410RandomSelf-ReducibilityForcryptographicpurposes,itisagoodsignifapresumablyhardproblemisrandomself-reducible.Inthatcase,itisexcludedthateventhoughtheproblemishardintheworst-case,theproblemisactuallyeasyontheaverage.Toseewhy,considerarandomself-reducibleproblemandsupposethattheproblemiseasyontheaverage.Thentherecannotbeanyhardinstancesatall,sinceanysuchinstancecanbesolvedbysolvinganassociatedrandominstanceduetorandomself-reducibility.Proposition:
Anyrandomself-reducibleproblemthatishardintheworst-caseisalsohardontheaverage.2023/1/1411RandomSelf-Reducibility2023/1/1412RandomSelf-Reducibility2023/1/1413RandomSelf-Reducibility2023/1/14142023/1/1415NegligibleFunctionForlateruse,wealsogiveamoreformalversionoftheDDHassumption,whichisstatedintermsofpolynomiallyindistinguishabledistributions.2023/1/1416PolynomiallyIndistinguishableDistributions2023/1/1417PolynomiallyIndistinguishableDistributions2023/1/1418PolynomiallyIndistinguishableDistributions2023/1/14192023/1/1420ExampleofPolynomiallyIndistinguishableSymmetricciphersAESciphertextsEk(m1),Ek(m2),…,Ek(mn)PRuniformelementsx1,x2,…,xn
{0,1}|E|
RFinitefieldsDiffie-Hellmantuple(g,gx,gy,gxy)PRuniformtuple(g,gx,gy,gz)RIntegersofthesamelengthtwo-primeoddcompositepq
PRuniformoddcompositen
RQuadraticresiduosityassumption(QRA):squarex2(modn)(nisarandomoddcomposite)PRuniformy<nofpositiveJacobisymbolmodn
R2023/1/1421HashFunctionDefinition:AfunctionH:{0,1}*
{0,1}k,mappingbitstringsofarbitrarylengthtobitstringsofafixedlengthk,k0,iscalledahashfunction.FunctionHiscalledacryptographichashfunction,ifitiseasytocomputeH(x)givenanystringx,andoneormoreofthefollowingrequirementsaresatisfied:preimageresistance(onewayness):givenak-bitstringyitiscomputationallyinfeasibletofindabitstringxsuchthatH(x)=y.2nd-preimageresistance(weakcollisionresistance):givenapairx,ywithy=H(x)itiscomputationallyinfeasibletofindabitstringx’xsuchthatH(x’)=y.collisionresistance(strongcollisionresistance):itiscomputationallyinfeasibletofindbitstringsx,x’withx’xsuchthatH(x)=H(x’).2023/1/1422HashFunctionIngeneral,collisionresistanceimplies2nd-preimageresistance,butcollisionresistanceneednotimplyonewayness.Inpractice,however,cryptographichashfunctionsusuallysatisfyallthreerequirements.PracticalexamplesofcryptographichashfunctionsareMD5,withoutputlengthsk=128SHA-1,withoutputlengthsk=160SHA-256,withoutputlengthsk=256Ifcollisionresistanceisnotrequired,onemaytruncatetheoutputsbydiscarding,e.g.,thelastk/2bits;theresultinghashfunctionisstillpreimageresistant.2023/1/1423RandomOracleModelManyprotocolsmakeuseofacryptographichashfunction.Inordertobeabletoproveanythingusefulonthesecurityofsuchprotocolsonecommonlyusestheso-calledrandomoraclemodel.Inthismodel,acryptographichashfunctionisviewedasarandomoracle,whichwhenqueriedwillbehaveasablackboxcontainingarandomfunctionh:{0,1}*{0,1}k,say.Iftheoracleisqueriedonaninputvaluex,itwillreturntheoutputvalueh(x).Asaconsequence,iftheoracleisqueriedmultipletimesonthesameinput,itwillreturnthesameoutputvalue,ashisafunction.Moreover,ifoneobservesthedistributionoftheoutputvaluefordifferentinputvalues,thedistributionwillbeuniform,ashisarandom.2023/1/1424RandomOracleModelNotethattheuseoftherandomoraclemodelisaheuristic!Ifweproveaprotocolsecureintherandomoraclemodel,itdoesnotfollowthatthesameprotocolusing,e.g.,SHA-1asitshashfunctionissecure,sinceSHA-1issimplynotarandomfunction.Thus,thepracticalupshotoftherandomoraclemodelisthataprotocolprovedsecureinitcanonlybebrokeniftheattackertakesintoaccountspecificpropertiesoftheconcretehashfunctionused.2023/1/1425RandomOracleModelProposition:LetHbeacryptographichashfunction,whichweviewasarandomoracle.LetAbeanadversarythatmakesatmostthashqueries.LetyR{0,1}kbegiven.TheprobabilitythatAfindsapreimagexsuchthatH(x)=yisatmostt/2k.LetxR{0,1}andy=H(x)begiven.TheprobabilitythatAfindsasecondpreimagex’,x’x,suchthatH(x’)=yisatmostt/2k.TheprobabilitythatAfindspreimagesx,x’,x’x,suchthatH(x)=H(x’)isatmostt2/2k.2023/1/14262023/1/1427Diffie-HellmanKeyExchangeSupposetwoparties,AandB,haveagreeduponagroupGn=<g>,wherewerequirentobeprime.TheDiffie-HellmankeyexchangeprotocolenablespartiesAandBtoarriveatasharedkeyKbyexchangingmessagesoverapublicchannel.KeyKremainsunknowntoanyeavesdropper.PartyApicksavaluexA
Znuniformlyatrandom,andsendsyA=gxAtopartyB.Similarly,partyBpicksavaluexB
Znuniformlyatrandom,andsendsyB=gxBtopartyA.UponreceiptofyB,partyAcomputeskeyKAB
yBxA.Similarly,partyBcomputeskeyKBA
yAxB.Clearly,K=KAB=KBAisasharedkeyforAandB2023/1/1428Diffie-HellmanKeyExchangeDiscussionNoentityauthentication.Secureagainstpassiveadversaries(eavesdroppers).Man-in-the-middleattackexists.2023/1/1429Diffie-HellmanKeyExchange2023/1/1430PassiveAttacksApassiveattacker(oreavesdropper)learnsthevaluesyA=gxAandyB=gxB.UndertheDLassumptionitisinfeasibletodeterminexAandxBfromyAandyB.However,thisdoesnotguaranteethatthevalueofK=yAxBcannotbedeterminedgivenjustyAandyB.ToexcludethispossibilityweneedtheDHassumption.AstrongerassumptionisneededtoensurethataneavesdropperdoesnotlearnanyinformationwhatsoeveronK.Ingeneral,aneavesdroppermaylearnsomepartialinformationonK,whilefullrecoveryofKisinfeasible.2023/1/1431PassiveAttacksForexample,aneavesdroppermightbeabletodeterminetheparityofK,viewingKasaninteger,whichwouldmeanthattheeavesdropperlearnsonebitofinformation.ToexcludesuchpossibilitiesweneedtheDDHassumption.Wewillnowmakethismoreprecise.Firstwearguewhyweneedtorequirethatnisprime.Supposenisnotprime,sayn=2p’,wherep’isprime.ForanyelementyG,wehaveord(y){1,2,p’,2p’}andord(y)iseasilycomputed.Wehavethefollowingtable,whereeachcaseoccursapproximatelywithprobability1/4:2023/1/1432PassiveAttacksHence,theorderofthekeyKisbiased,asPr[ord(K)=p’]3/4andPr[ord(K)=2p’]1/4.IfKwouldbegenerateduniformlyatrandominG,thenwewouldhavePr[ord(K)=p’]Pr[ord(K)=2p’]1/2.SuchaslightdeviationinthedistributionofKseemsinnocent.However,supposekeyKisusedtoencrypta1-bitmessage,saymR{1,g},usingc=mKasciphertext(liketheone-timepadconstruction).Inthatcase,aneavesdropperwouldcomputeord(c).Iford(c)=pthenmostlikelym=1,andiford(c)=2pthenmostlikelym=g.2023/1/1433PassiveAttacksExercise:ArguethattheDDHassumptionisfalsewhenncontainsasmallprimefactor.2023/1/1434PassiveAttacksSo,assumethatnisprime.BTW,ifaneavesdropperwouldbeabletodetermineanypartialinformationonkeyK,thenwewouldgetacontradictionwiththeDDHassumption.2023/1/1435APracticalVariantWenowconsidertheDiffie-Hellmanprotocolasabove,exceptthatthekeyKisdefinedasfollows:
K=H(gxAxB),whereHisacryptographichashfunction.Clearly,bothpartiesarestillabletocomputeKbyfirstcomputinggxyandthenapplyingH.ApracticalchoiceforHisthestandardizedSHA-1hashfunction.2023/1/1436APracticalVariantThereasonforusingahashfunctionHisthateventhoughgxAxBwillhaveasufficientamountofentropy,itcannotbesimplyusedasanAESkey,forexample.ThevalueofgxAxBwillbeuniformlydistributedamongthegroupelementsinG\{1},butusuallyaredundantrepresentationisusedforthegroupelements.Forexample,ifGisasubgroupofZp,thenelementsofGareusuallyrepresentedasbitstringsoflength[log2p],whiletheorderofGcanbemuchsmallerthanp.Theuseofacryptographichashfunctionisapracticalwaytoremovethisredundancy.Theresultwillbeafullyrandombitstringaslongastheorderofthegroupnexceeds2k,wherekdenotestheoutputlengthofH,i.e.,H:{0,1}*
{0,1}k.2023/1/1437APracticalVariantWenowconcludethattheresultingprotocolissecureagainstpassiveattacks,assumingtheDHassumptionandtheRandomOraclemodel.2023/1/1438Aside:ElGamalEncryptionRecallthattheElGamalcryptosystemisdefinedasfollows,givenasecurityparameterk.Notethatkeygenerationandencryptionarerandomized,whiledecryptionisdeterministic.Inpractice,thegroup<g>maybesharedbetweenmanyusers.2023/1/1439AuthenticatedKeyExchangeUndertheDDHassumption,theDiffie-Hellmanprotocolissecureagainstpassiveattackers.Againstactiveattackers,however,theprotocoliscompletelyinsecure.WhileapassiveattackerisrestrictedtoeavesdroppingonthecommunicationbetweenAandB,anactiveattackerisallowedtomanipulatethemessagesexchangedbetweenAandBatitsownliking.Thatis,anattackermaydelete,inject,andmodifymessages.Inthecontextofkeyexchangeprotocols,themostprominenttypeofactiveattackisaso-calledman-in-the-middleattack.Here,theideaisthatwhenAandBengage,say,inanexecutionoftheDiffie-Hellmanprotocol,theattackerwillreplacethevaluesyAandyBbyvaluesy’Aandy’Bofitsownchoice,respectively.Below,weconsiderafewexamples.2023/1/1440Man-in-the-MiddleAttacks2023/1/1441Man-in-the-MiddleAttacks2023/1/1442AProtocolUsingDigitalSignaturesTheDiffie-Hellmanprotocolonlywithstandspassiveattacks.Afirst,butgeneral,ideatoobtainakeyexchangeprotocolwithstandingactiveattacksistoauthenticatethecommunicationbetweenAandB.Forinstance,wemayassumethatAandBknoweachother’spublickeysinadigitalsignaturescheme.2023/1/1443AProtocolUsingDigitalSignaturesThereismanysolutionstothisproblem,butonlyafewhavebeenprovedcorrect.Wewillnotgiveaformalsecurityanalysisatthispoint.Theprotocolisasfollows.PartyApicksxA
Znuniformlyatrandom,andsendsyA=gxAalongwithasignatureon(yA,B)topartyB.Similarly,partyBpicksxB
Znuniformlyatrandom,andreplieswithyB=gxBalongwithasignatureon(yA,yB,A)topartyA.Asbefore,theagreeduponkeyisK=gxAxB.AprotocolofthistypeissecureundertheDDHassumption,alsoassumingthatthedigitalsignatureschemeissecure.2023/1/1444I
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省潍坊市寿光重点中学2024-2025学年初三中考适应性模拟押题测试(一)生物试题含解析
- 江苏省金陵中学2025届高三三轮复习系列七出神入化7物理试题含解析
- 气象科技研发与应用合同2025
- 西藏林芝地区察隅县2025年三年级数学第二学期期末教学质量检测模拟试题含解析
- 上海市宝山区2024-2025学年初三第二次中考模拟统一考试生物试题含解析
- 山东省枣庄峄城区六校联考2024-2025学年初三第二学期期末质量抽测化学试题含解析
- 智慧农业技术创新与推广策略
- 战略合作保密合同书:机密信息篇
- 零食销售用工合同
- 混凝土采购合同范本
- 急性心力衰竭试题附答案
- 房室结折返性心动过速
- 光伏工程绿色施工、节能减排方案
- GB/T 18711-2002选煤用磁铁矿粉试验方法
- 小学生防溺水安全教育主题班会PPT
- 5030i仪器原理、维护与操作
- 配电屏柜安装工艺
- 半导体器件物理 课件
- 超星尔雅学习通《中国古典小说巅峰四大名著鉴赏(中国红楼梦学会)》章节测试含答案
- MBR膜离线清洗方案
- 音乐课件《快乐的节日》(动画音频都能播放)
评论
0/150
提交评论