版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省安庆市普通高校对口单招高等数学一自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
2.设函数y=f(x)的导函数,满足f(-1)=0,当x<-1时,f(x)<0;当x>-1时,f(x)>0.则下列结论肯定正确的是().
A.x=-1是驻点,但不是极值点B.x=-1不是驻点C.x=-1为极小值点D.x=-1为极大值点
3.
4.
5.
A.仅有水平渐近线
B.既有水平渐近线,又有铅直渐近线
C.仅有铅直渐近线
D.既无水平渐近线,又无铅直渐近线
6.
7.
8.
9.
10.在空间直角坐标系中,方程x+z2=z的图形是A.A.圆柱面B.圆C.抛物线D.旋转抛物面
11.曲线的水平渐近线的方程是()
A.y=2B.y=-2C.y=1D.y=-112.
设f(x)=1+x,则f(x)等于()。A.1
B.
C.
D.
13.绩效评估的第一个步骤是()
A.确定特定的绩效评估目标B.确定考评责任者C.评价业绩D.公布考评结果,交流考评意见
14.已知作用在简支梁上的力F与力偶矩M=Fl,不计杆件自重和接触处摩擦,则以下关于固定铰链支座A的约束反力表述正确的是()。
A.图(a)与图(b)相同B.图(b)与图(c)相同C.三者都相同D.三者都不相同
15.
16.
17.曲线y=x-3在点(1,1)处的切线斜率为()
A.-1B.-2C.-3D.-418.A.A.
B.
C.
D.
19.
20.
二、填空题(20题)21.
22.
23.24.25.设y=y(x)由方程x2+xy2+2y=1确定,则dy=______.
26.
27.28.29.∫x(x2-5)4dx=________。
30.
31.幂级数的收敛半径为________。32.幂级数的收敛半径为______.33.设y=f(x)在点x=0处可导,且x=0为f(x)的极值点,则f'(0)=______.
34.
35.36.
37.
38.
39.设区域D:0≤x≤1,1≤y≤2,则40.三、计算题(20题)41.
42.
43.求微分方程y"-4y'+4y=e-2x的通解.
44.45.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.46.
47.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.48.49.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
50.
51.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
52.求微分方程的通解.53.当x一0时f(x)与sin2x是等价无穷小量,则54.证明:55.将f(x)=e-2X展开为x的幂级数.56.求函数f(x)=x3-3x+1的单调区间和极值.57.
58.求曲线在点(1,3)处的切线方程.59.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.60.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
四、解答题(10题)61.
62.
63.
64.65.66.67.
68.求曲线y=x2在(0,1)内的一条切线,使由该切线与x=0、x=1和y=x2所围图形的面积最小。
69.
70.
五、高等数学(0题)71.判定
的敛散性。
六、解答题(0题)72.
参考答案
1.C
2.C本题考查的知识点为极值的第-充分条件.
由f(-1)=0,可知x=-1为f(x)的驻点,当x<-1时f(x)<0;当x>-1时,
f(x)>1,由极值的第-充分条件可知x=-1为f(x)的极小值点,故应选C.
3.A
4.B解析:
5.A
6.C
7.C
8.B解析:
9.A
10.A
11.D
12.C本题考查的知识点为不定积分的性质。可知应选C。
13.A解析:绩效评估的步骤:(1)确定特定的绩效评估目标;(2)确定考评责任者;(3)评价业绩;(4)公布考评结果,交流考评意见;(5)根据考评结论,将绩效评估的结论备案。
14.D
15.D
16.B
17.C由导数的几何意义知,若y=f(x)可导,则曲线在点(x0,f(x0))处必定存在切线,且该切线的斜率为f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲线y=x-3在点(1,1)处的切线斜率为-3,故选C。
18.D本题考查的知识点为可变上限积分的求导.
当f(x)为连续函数,φ(x)为可导函数时,
因此应选D.
19.A
20.C
21.00解析:22.2本题考查的知识点为二重积分的几何意义.
由二重积分的几何意义可知,所给二重积分的值等于长为1,宽为2的矩形的面积值,故为2.或由二重积分计算可知
23.
24.2.
本题考查的知识点为二阶导数的运算.
25.
;
26.
27.28.本题考查的知识点为重要极限公式。
29.
30.31.因为级数为,所以用比值判别法有当<1时收敛,即x2<2。收敛区间为,故收敛半径R=。32.0本题考查的知识点为幂级数的收敛半径.
所给幂级数为不缺项情形
因此收敛半径为0.33.0本题考查的知识点为极值的必要条件.
由于y=f(x)在点x=0可导,且x=0为f(x)的极值点,由极值的必要条件可知有f'(0)=0.
34.
解析:
35.
36.1本题考查了无穷积分的知识点。
37.00解析:
38.
39.本题考查的知识点为二重积分的计算。
如果利用二重积分的几何意义,可知的值等于区域D的面积.由于D是长、宽都为1的正形,可知其面积为1。因此
40.
41.
42.
43.解:原方程对应的齐次方程为y"-4y'+4y=0,
44.
45.
46.由一阶线性微分方程通解公式有
47.由二重积分物理意义知
48.
49.
50.
51.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
52.53.由等价无穷小量的定义可知
54.
55.56.函数的定义域为
注意
57.
则
58.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《面向SOA的企业服务总线研究与应用》
- 《职业生涯考虑机制理论分析与实证检验》
- 自然灾害救助申请表(样表)
- 《帕立骨化醇对血液透析合并继发性甲状旁腺功能亢进患者心功能的影响》
- 七年级道德与法治开学摸底考试卷10
- 2024年锡林郭勒盟道路运输客运从业资格证模拟考试
- 三年级语文下册第一单元测试卷(基础卷)(含答案)
- 2024年天津客运资格证题库及答案解析
- 人教部编版六年级语文上册第22课《文言文二则》精美课件
- 2024年度货物采购合同供应商权利与义务
- 地球物理勘探合同范本
- 超星尔雅学习通《人人学点营销学(中南财经政法大学)》2024章节测试答案
- 营业线施工有关事故案例及分析
- 植物油灶具供货安装合同
- 车辆维修技术服务方案(2篇)
- 品牌提升策划方案
- 2024年国家工信部信息中心事业单位招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 肩痹(肩袖损伤)中医临床路径及入院标准2020版
- 协同办公平台应用系统接入要求
- 跟踪审计服务 投标方案(技术方案)
- (打印)初一英语语法练习题(一)
评论
0/150
提交评论