版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2011年高考数学总复
习系列
精品资料
精品资料
2011年高考数学总复习系列》——高中数学选修2-2
第一章导数及其应用
无论哪个省市的考题中可以看出,一定会重视对导数的考察,所以同学一定将导数学细学
精!
基础知识【理解去记】
1.极限定义:(
1)若数列{un}满足,对任意给定的正数ε,总存在正数m,当n>m且n∈
N时,恒有|un-A|<ε成立(A为常数),则称A为数列un当n趋向于无穷大时的极限,记为limf(x),limf(x)limf(x)
xx,另外xx0 =A表示x大于x0且趋向于x0时f(x)极限为A,称右极
limf(x)
限。类似地xx0 表示x小于x0且趋向于x0时f(x)的左极限。
limlimlim
2.极限的四则运算:如果xx0f(x)=a,xx0g(x)=b,那么xx0[f(x)±g(x)]=a±b,
limlimgf((xx))ab(b0).
xx0[f(x)?g(x)]=ab,xx0g(x)b
limlim
3.连续:如果函数f(x)在x=x0处有定义,且xx0f(x)存在,并且xx0f(x)=f(x0),则称f(x)在x=x0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和
最小值
5.导数:若函数f(x)在x0附近有定义,当自变量x在x0处取得一个增量Δx时(Δx充分
limy
小),因变量y也随之取得增量Δy(Δy=f(x0+Δx)-f(x0)).若x0x存在,则称f(x)在x0处可
dy导,此极限值称为f(x)在点x0处的导数(或变化率),记作f'(x0)或y'xx0或dxx0,即f'(x0)limf(x)f(x0)
0xx0 。由定义知f(x)在点x0连续是f(x)在x0可导的必要条件。若f(x)
在区间I上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是: f(x)在
点x0处导数f'(x0)等于曲线y=f(x)在点P(x0,f(x0))处切线的斜率。
仅供学习与交流,如有侵权请联系网站删除谢谢2
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
6.【必背】八大常用函数的导数:
1)(c)'=0(c为常数);
a1
2)(xa)'ax(a为任意常数);
3)(sinx)'cosx;
(4)(cosx)'sinx;
(5)(ax)'axlna;
(6)(ex)'ex;
1
7)(logax)'xlogax;
(lnx)'18) x
7.导数的运算法则:若u(x),v(x)在x处可导,且u(x)≠0,则
1)[u(x)v(x)]'u'(x)v'(x);(2)[u(x)v(x)]'u'(x)v(x)u(x)v'(x);(3)
[1]'u'(x)[u(x)]u(x)v'(x)u'(x)v(x)[cu(x)]'cu'(x)(c为常数);(4)u(x) u2(x);(5)u(x)
u2(x)
8.
****【必会】复合函数求导法:设函数y=f(u),u=(x),已知(x)在x处可导,f(u)在对
点u(u=(x))处可导,则复合函数y=f[(x)]在点x处可导,且(f[(x)])'=f'[(x)]'(x)
9.导数与函数的性质:单调性:(1)若f(x)在区间I上可导,则f(x)在I上连续;(2)若对
一切x∈(a,b)有f'(x)0,则f(x)在(a,b)单调递增;(3)若对一切x∈(a,b)有
f'(x)0,则
f(x)在(a,b)单调递减。
10.极值的必要条件:若函数f(x)在x0处可导,且在x0处取得极值,则f'(x0)0.
11.极值的第一充分条件:设f(x)在x0处连续,在x0邻域(x0-δ,x0+δ)内可导,(1)若当x∈
(x-δ,x0)时f'(x)0,当x∈(x0,x0+δ)时f'(x)0,则f(x)在x0处取得极小值;(2)若当x
∈(x0-δ,x0)时f'(x)0,当x∈(x0,x0+δ)时f'(x)0,则f(x)在x0处取得极大值。
12.极值的第二充分条件:设f(x)在x0的某领域(x0-δ,x0+δ)内一阶可导,在x=x0处二阶可导,且f'(x0)0,f''(x0)0。(1)若f''(x0)0,则f(x)在x0处取得极小值;(2)若f''(x0)0,则f(x)在x0处取得极大值。
13.【了解】罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则存
在ξ∈(a,b),使f'()0.
[证明]若当x∈(a,b),f(x)≡f(a),则对任意x∈(a,b),f'(x)0.若当x∈(a,b)时,f(x)≠f(a),因为f(x)在[a,b]上连续,所以f(x)在[a,b]上有最大值和最小值,必有一个不等于f(a),
不妨设最大值m>f(a)且f(c)=m,则c∈(a,b),且f(c)为最大值,故f'(c)0,综上得证。
二、基础例题【必会】
1.极限的求法。
例1求下列极限:(
1)
lim
n
lim
;(2)n1
n
aan(a0)
an ;(3)
lim
n
1
n2
1
n22
1
2
nn
;(4)
limn(n1n
[解]
1)
lim
n
12
22
nn
n(n1)
n
2lim2n=n2n2
lnim12
2
2n
1
2;
2)当a>1时,
n
lnim1aan
limn1
lim
n
1
n
1n
1.
n
lnimann1an当0<a<1时,
liman
n
1liman
n
0.
n
当a=1时,lnim1aan
limn1
n
3)因为n2nn21
1
n22
1
n2n
n
n2 1
lim n lim 1
n 2 n
nn2nn11n
1,lim
n
lim1,n
1lim所以n
n2
1
1n22
1
n2n
4)
例2
2)
[解]
m
li
m
li
limn(nn
1n)lim
n
1.
n
1
2
x22)⋯(1+x2
n
n1n
求下列极限:
lim33
x11x3
lim
(1)n(1+x)(1+x2)(1+
1 x2
lim
1x;(3)x13x1
lim
1)n(1+x)(1+x2)(1+
22 2n
x)⋯(1+x)
1
(
2
n2
x
1
m
lin
m
li
2
(
)
x
m1
lix
x。
lim
)(|x|<1);
m
li
lim(x1)(x1)(3x1x)lim(x1)(3x1x)=x12(1x)x12
22.
2.连续性的讨论。
例3设f(x)在(-∞,+∞)内有定义,且恒满足f(x+1)=2f(x),又当x∈[0,1)时,f(x)=x(1-x)2,试讨论f(x)在x=2处的连续性。
[解]当x∈[0,1)时,有f(x)=x(1-x)2,在f(x+1)=2f(x)中令x+1=t,则x=t-1,当x∈[1,2)时,
利用f(x+1)=2f(x)有f(t)=2f(t-1),因为t-1∈[0,1),再由f(x)=x(1-x)2得f(t-1)=(t-1)(2-t)2,从而t∈
[1,2)时,有f(t)=2(t-1)?(2-t)2;同理,当x∈[1,2)时,令x+1=t,则当t∈[2,3)时,有f(t)=2f(t-2(x1)(2x)2,x1,2;
2
1)=4(t-2)(3-t)2.从而f(x)=4(x2)(3x),x2,3.所以
所以
22
limf(x)lim2(x1)(2x)20,limf(x)lim4(x2)(3x)20x2 x2x2x2
lim lim
x2f(x)=2
2f(x)=f(2)=0,所以f(x)在x=2处连续。3.利用导数的几何意义求曲线的切线方程。
[解]因为点(2,0)不在曲线上,设切点坐标为
(x0,y0),则
x0,切线的斜率为
1
1
1
1
x'|x0 x2
x2(x
x0)
y
2(xx0)
0x0,所以切线方程为
y-y0=x0
,
即 x0
x0 。又因为此切线过
11
2
点(2,0),所以x0 x0
(2x0)
,所以x0=1,
所以所求的切线方程为y=-(x-2),即x+y-
1
y0
2=0.
4.导数的计算。
5x23xxy
例5求下列函数的导数:(1)y=sin(3x+1);(2) x ;(3)y=ecos2x;
x1
(4)yln(xx1);(5)y=(1-2x)x(x>0且 2)。
[解](1)y'cos(3x1)(3x1)'3cos(3x+1).
y'
(2)
(5x23x x)'x(5x23xx)(x)'
2x
10x3
5x2
1
2x
x
2x3
cos2xcos2x
3)y'e(cos2x)'ecos2x(sin2x)(2x)'2esin2x.
4)
y'xx21
(xx2
1)'
x211
x21
5)y'[(12x)x]'
[exln(12x)]'
exln(12x)(xln(1
2x))'
x
(12x)xln(12x)
2x
12x
5.用导数讨论函数的单调性。
例6设a>0,求函数f(x)=x-ln(x+a)(x∈(0,+∞))的单调区间。
f'(x)
[解]
1
2x
1(x
xa
0)
,因为x>0,a>0,所以f'(x)
x2+(2a-4)x+a2>0;
f'(x)0x2+(2a-4)x+a+<0.
(1)当a>1时,对所有x>0,有x2+(2a-4)x+a2>0,即f'(x)>0,f(x)在(0,+∞)上单调递增;(2)当a=1时,对x≠1,有x2+(2a-4)x+a2>0,即f'(x)0,所以f(x)在(0,1)内单调递增,在(1,+∞)内递增,又f(x)在x=1处连续,因此f(x)在(0,+∞)内递增;(3)当0<a<1时,令f'(x)0,即x2+(2a-4)x+a2>0,解得x<2-a-21a或x>2-a+21a,因此,f(x)在(0,2-a-21a)内单调递增,在(2-a+21a,+∞)内也单调递增,而当2-a-21a<x<2-a+21a时,x2+(2a-4)x+a2<0,即f'(x)0,所以f(x)在(2-a-21a,2-a+21a)内单调递减。
6.利用导数证明不等式。
x(0,)
例7设2,求证:sinx+tanx>2x.
(0,2)时,
cosx
1
2
cosx
2cosx
1
2
cosx
2
cosx
2
(因为0<cosx<1),所以f'(x)=cosx+sec2x-
1
2
2=cosx+cosx
0
.又f(x)在
0,0,
2上连续,所以f(x)在2上单调递增,所以当
x∈
[证明]设f(x)=sinx+tanx-2x,则f'(x)=cosx+sec2x-2,
0,2时,f(x)>f(0)=0,即sinx+tanx>2x.
利用导数讨论极值。
例8设f(x)=alnx+bx2+x在x1=1和x2=2处都取得极值,试求a与b的值,并指出这时f(x)
在x1与x2处是取得极大值还是极小值。
[解]因为f(x)在(0,+∞)上连续,可导,又f(x)在x1=1,x2=2处取得极值,所以
a2
a2b10,a3
f'(x)aa4b10,b1.f'(1)f'(2)0,又f'(x)x+2bx+1,所以2解得6
所以f(x)
212
lnxxx,f'(x)
36
2
3x
1x1
(x1)(2x)
3x
所以当x∈(0,1)时,f'(x)0,所以f(x)在(0,1]上递减;当x∈(1,2)时,f'(x)0,所以f(x)在[1,2]上递增;当x∈(2,+∞)时,f'(x)0,所以f(x)在[2,+∞)上递减。
综上可知f(x)在x1=1处取得极小值,在x2=2处取得极大值。
例9设x∈[0,π],y∈[0,1],试求函数f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x的最小值。
[解]首先,当x∈[0,π],y∈[0,1]时,
sin(1y)x2y1sinx
f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x=(1-y)2x(1y)x(1y)x=(1-
sin(1
y)x
sinx
2y
sinx
sinx
y)2x
(1
y)x
x
(1y)2
x,令g(x)=
x,
cosx(x
tanx)
g'(x)
2
(x),
x
2
x
0,
当
2
时,
因为
cosx>0,tanx>x,所以g'(x)
0;
x当
2,
时,
因为
cosx<0,tanx<0,x-tanx>0,所以g'(x)0;
又因为g(x)在(0,π)上连续,所以g(x)在(0,π)上单调递减。
sin(1y)xsinx
2
ysinx又因为(1y)x
又因为0<(1-y)x<x<π,所以g[(1-y)x]>g(x),即(1y)x0
,所以当x∈(0,π),y∈(0,1)时,f(x,y)>0.
其次,当x=0时,f(x,y)=0;当x=π时,f(x,y)=(1-y)sin(1-y)π≥0.
当y=1时,f(x,y)=-sinx+sinx=0;当y=1时,f(x,y)=sinx≥0.综上,当且仅当x=0或y=0或x=π且y=1时,f(x,y)取最小值0
三、趋近高考【必懂】
这些高考题取自2009-2010年各个热门省市,同学一定重视,在此基础上,我会对这些高考
作以删减,以便同学在最短时间内理解明白!
1.(2009全国卷Ⅰ理)已知直线y=x+1与曲线yln(xa)相切,则α的值为()
A.1
B.2
C.-1
D.-2
答案B
'1
解:设切点
P(x0,y0)
,则y0
y'|xx 1
x01,y0ln(x0a),又 xx0x0a
x0a
1y0
0,x0
1a2.故答案选B
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
精品资料
2.(2009安徽卷理)已知函数f(x)在R上满足
2
f(x)2f(2x)x28x8,则曲线
yf(x)在点(1,f(1))处的切线方程是
A.y
(
2x
B.yxC.y
3x
2D.y2x3
答案
解析
f(x)
2
2f(2x)x2
8x
8得几何f(2x)
2
2f(x)(2x)28(2
x)8,
即2f(x)
f(2
x)
x24x4,
f(x)x2∴f/(x)
2x,∴切线方程y
12(x1),即
2xy1
0选A
3.(2009江西卷文)
若存在过点
(1,0)的直线与曲线y
x3
215
axx
4
9
都相切,则a等
54
26
-
1
214
1
54
26-
74
7
74
答案A
33
解析设过(1,0)的直线与yx相切于点(x0,x0),所以切线方程为
32
yx03x0(xx0)
x3
即y3x0x2x0,又(1,0)在切线上,则x00或x02,
x0
0时,由y
2
0与yax
15
x
4
9a
相切可得
25
64
32727215
x0 yxyaxx9
当02时,由44与4相切可得a1,所以选A.
(2009辽宁卷理)若x1满足2x+2x=5,x2满足2x+2log2(x-1)=5,x1+x2=()
57
A.2B.3C.2D.4
答案C
仅供学习与交流,如有侵权请联系网站删除谢谢10
解析由题意2x125①
2x22log2(x21)5②
所以2x152x1,x1log2(52x1)
即2x12log2(52x1)
令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1)
∴5-2t=2log2(t-1)与②式比较得t=x2
于是2x1=7-2x2
1
f(x)xlnx(x0),
(2009天津卷理)设函数 3则yf(x) ()
1
(,1),(1,e)
A在区间e内均有零点。
1
(,1),(1,e)
B在区间e内均无零点。
C在区间(1e,1)内有零点,
在区间
(1,e)内无零点
(1,1)
D在区间e内无零点,在区间
(1,e)内有零点
解析:由题得f`(x)
3x3x,令f`(x)0得x3;令f`(x)0得0x3;
f`(x)0得x3,故知函数f(x)在区间(0,3)上为减函数,在区间(3,)
为增函数,在点
x
3处有极小值
1
1f(1),fe
e
1
10,f()
1
3
3
e
3e
6.若曲线fx
2ax
Inx存在垂直于
ln30;又
10,故选择D。
y轴的切线,则实数a的取值范围是
精品资料
7
仅供学习与交流,如有侵权请联系网站删除谢谢
精品资料
7
仅供学习与交流,如有侵权请联系网站删除谢谢
解析由题意该函数的定义域x0,由
x2ax
1
x。因为存在垂直于y轴的切线,故此
时斜率为0,问题转化为x0范围内导函数
2ax1
x存在零点。
2ax
解法(分离变量法)上述也可等价于方程
0在0,内有解,显然可得
1a 2x2
,0
7.(2009陕西卷理)设曲线ylgxn,则a1a2
xn1(nN*)在点(1,
1)处的切线与x轴的交点的横坐标为xn
令an
a99的值为
答案
-2
点(1,1)在函数
yxn1的导函数为y'(n1)x
解析:
1(nN*)的图像上,
切线是:
1,
令y=0得切点的横坐标:xn
a1a2...a99lgx1x2...x99
y'|x1n1nn1lg12...98
2399100
1)为切点,
1(n
1)(x1)
99
1lg100
8(2010.全国1文).设
f(x)x3
1x22x
2
5
,当
2,2]时,
f(x)m0恒成立,求
实数m的取值范围.
解析】:
f/(x)
3x2
由f(x)0得3x2
2,由
2
0即3
f/(x)0得3x2
x20,即
x1(
,所以函数单调增区间是
2
3或x
,2)
,3),(1,);
1;
函数的单调减区间是
23,1)。
。
由f(x)m恒成立,m大于f(x)的最大值。当
x[2,2]时,
(1)当x[2,3]时,
21572
f(x)maxf(2)157x[2,1]
max327;(2)当 3时,
f(x)max
数,所以
7157
727,从而m
f(x)为增函数,所以
f(2)157
327;(3)当x[1,2]时,f(x)为增函数,所以f(x)max
f(x)为减函
f(2)7;因为
第二章推理与证明
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
本章只需重视综合法、分析法、反证法的特点。及数学归纳法的掌握!
一、基础知识【理解去记】综合法:“执因导果”分析法“执果导因”反证法:倒着推【不常考】
归纳法:由一些特殊事例推出一般结论的推理方法特点:特殊→一般 .
不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法
完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的通常在事物包括的特殊情况数不多时,采用完全归纳法
数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当nk(kN*,k≥n0)时命题成立,证明当nk1命题也成立这种证明方法就叫做数学归纳法.
数学归纳法的基本思想:即先验证使结论有意义的最小的正整数 n0,如果当nn0时,命
题成立,再假设当nk(kN*,k≥n0)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当nk1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n01,n02,⋯,命题都成立.
用数学归纳法证明一个与正整数有关的命题的步骤:
1证明:当n取第一个值n0结论正确;2假设当nk(kN*,k≥n0)时结论正确,证明当nk1时结论也正确由1,2可知,命题对于从n0开始的所有正整数n都正确.数学归纳法被用来证明与自然数有关的命题:递推基础不可少,归纳假设要用到,结论写明莫忘掉
1用数学归纳法证题时,两步缺一不可;2证题时要注意两凑:一凑归纳假设,二凑目标.
二、基础例题【必会】
用数学归纳法证明等式
111n
用数学归纳法证明:nN时,1335(2n1)(2n1)2n1点评:用数学归纳法证明,一是要切实理解原理,二是严格按步骤进行,格式要规范,从n=k到n=k+1时一定要用归纳假设,否则不合理。
用数学归纳法证明不等式
1
例2.证明n1
n2
3n1
1,(n
N)
点评:用数学归纳法证明不等式,推导n=k+1也成立时,证明不等式的常用方法,如比较法、分析法、综合法均要灵活运用,在证明的过程中,常常利用不等式的传递性对式子放缩
建立关系。同时在数学归纳法证明不等式里应特别注意从n=k到n=k+1过程中项数的变化量,容易出错
用数学归纳法证明整除问题
例3.用数学归纳法证明:(3n1)71,(nN)能被9整除。
点评:用数学归纳法证明整除问题时,首先要从要证的式子中拼凑出假设成立的式子,然后
证明剩下的式子也能被某式(或数)整除,拼凑式关键。
第三章数系的扩充与复数
一、基础知识【理解去记】
1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。
2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z).z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之
间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面, x轴称为实轴,y
轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z
对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z).r称为z的模,也记作|z|,由勾股定理知|z|=ab.如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。
3.共轭与模,若z=a+bi,(a,b∈R),则za-bi称为z的共轭复数。模与共轭的性质有:
z1
z2
z1
2
z2;(5)
z1 |z1|
1)z1z2z1z2;(2)z1z2z1z2;(3)zz|z|;(4)
|z1||z|
z2
|z1z2||z1||z2|;(6)z2|z2|;(7)||z1|-|z2|≤||z1±z2|≤|z1|+|z2|;(8)
z
|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|;2(9)若|z|=1,则 z。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运
算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边
形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),则z1??
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
精品资料
z1r1
z20,zr
z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若 z2r2[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记
z1r1ei(12).
为z1z2=r1r2ei(θ1+θ2),z2r2
5.【部分省市考】棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).
n2k 2k
nwr(cosisin)
开方:若wr(cosθ+isinθ),则n n ,k=0,1,2,⋯,n-1。
7.单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记
22
cosisin2n1
Z1=nn,则全部单位根可表示为1,Z1,Z1,,Z1.单位根的基本性质有(这里ZZk
记ZkZ1,k=1,2,⋯,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;
0,当n|m,
mmm
(2)对任意整数m,当n≥2时,有1Z1Z2 Zn1=n,当n|m,特别1+Z1+Z2+⋯+Zn-
Z2 Zn1
1=0;(3)xn-1+xn-2+⋯+x+1=(x-Z1)(x-Z2)⋯(x-Zn-1)=(x-Z1)(x-Z1)⋯(x-Z1).
复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等
9.复数z是实数的充要条件是z=z;z是纯虚数的充要条件是:z+z=0(且z≠0).10.代数基本定理:在复数范围内,一元n次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则z=a-bi也是一个根。
12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac<0时方程的根为bi
x1,2 .
1,22a
二、基础例题【必会】
1.模的应用。
例1求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。仅供学习与交流,如有侵权请联系网站删除谢谢16
[证明]若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(z+1)=(z-1)(z-1),化简得z+z=0,又z=0不是方程的根,所以z是纯虚数。
例2设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。
[解]因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)
=|f(1)+f(-1)-f(i)-f(-i)|
≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.
复数相等。
例3设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
x2x10
[解]若方程有实根,则方程组xx0有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x2-x+1=0中Δ<0无实根,所以λ≠-1。所以x=-1,λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。
3.三角形式的应用。
例4设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?
[解]由题设得
[cos()isin()]ncosn()isin()cos(n)isin(n)
222222,所以
n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n有500个。
4.******【常考】二项式定理的应用
例5计算:
1)C1000
C1400
C100
C100;
C99
C100
[解](1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100=
0
100
C1100i
C1200i2
9999
C100i
100i100
100i
(C1000C1200C1400
C100
C100
)+(
135
C100C100C100
C99
C100
)i,比较实部和虚部,得
C1000
C1400
C100
C100
=-250,
C100C100C100
C99
C100=0。
5.复数乘法的几何意义
例6以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点
[证明]设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则
B,C对应的复数为-a,a,点A,M,N对应的复数为z1,z2,z3,CAz1a,BAz1a,由复数乘法的几何意义得:CNz3ai(z1a),①BMz2ai(z1a),②由①+②得z2z3
aiz2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数z=2 ,为定值,所以MN
的中点P为定点。
例7设A,B,C,D为平面上任意四点,求证:AB?AD+BC?AD≥AC?BD。
[证明]用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B|?|C-D|+|B-C|?|A-D|≥(A-B)(C-D)+(B-C)(A-D).
BABCArg()Arg()所以|A-B|?|C-D|+|B-C|?|A-D|≥|A-C|?|B-D|,“=”成立当且仅当 DACD,即
DABC
Arg()Arg()
BADC=π,即A,B,C,D共圆时成立。不等式得证。
6.复数与轨迹。
例8ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。
[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M
是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程
24x26(y4).为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得 3
仅供学习与交流,如有侵权请联系网站删除谢谢18
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
精品资料
仅供学习与交流,如有侵权请联系网站删除谢谢
所以ΔABC的外心轨迹是轨物线
7.复数与三角。
例9已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。
z1+z2+z3=0。所以z1z2z3
[证明]令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,则
z1z2z30.又因为|zi|=1,i=1,2,3.
z zi
所以zi?zi=1,即
1
zi
由z1+z2+z3=0得x1x2x32z1z22z2z3
2z3z1
0.
z1z2又
z3z2z3z1
z1z2z3
1
z1
1
z2
1
z3
z1z2z3(z1z2z3)0.
222所以z1z2z30
所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.
所以cos2α+cos2β+cos2γ=0。
例10求和:S=cos200+2cos400+⋯+18cos18×200.
[解]令w=cos200+isin200,则w18=1,令P=sin200+2sin400+⋯+18sin18×200,则
S+iP=w+2w2+⋯+18w18.①由①×w得w(S+iP)=w2+2w3+⋯+17w18+18w19,②由①-②得(1-
w(1w18)w)(S+iP)=w+w2+⋯+w18-18w19=1w
19
18w19
18w
所以S+iP=1w
22
,所以
8.复数与多项式
例11已知f(z)=c0zn+c1zn-1+⋯+cn-1z+cn是n次复系数多项式(c0≠0).
求证:一定存在一个复数z0,|z0|≤1,并且|f(z0)|≥|c0|+|cn|.
[证明]记c0zn+c1zn-1+⋯+cn-1z=g(z),令=Arg(cn)-Arg(z0),则方程g(Z)-c0eiθ=0为n次方程,其必有n个根,设为z1,z2,⋯,zn,从而g(z)-c0eiθ=(z-z1)(z-z2)?⋯?(z-zn)c0,令z=0得-c0ei
θ=(-1)nz1z2⋯znc0,取模得|z1z2⋯zn|=1。所以z1,z2,⋯,zn中必有一个zi使得|zi|≤1,从而
f(zi)=g(zi)+cn=c0eiθ=cn,所以|f(zi)|=|c0eiθ+cn|=|c0|+|cn|.
单位根的应用。
例12证明:自⊙O上任意一点p到正多边形A1A2⋯An各个顶点的距离的平方和为定值。
[证明]取此圆为单位圆,O为原点,射线OAn为实轴正半轴,建立复平面,顶点A1对应复
数设为
en
则顶点A2A3⋯An对应复数分别为ε2,
3,
n.设点p对应复数z,则|z|=1,
nn
2k2|pAk|2 |zk|2
且=2n-k1 k1
(z
k1
k)(z
k)
(2
k1
z)
n
k
z
=2n-k1
nk
k1
nn
2nzkzk2n.
k1k1命题得证
10.复数与几何
例13如图15-2所示,在四边形ABCD内存在一点P,使得ΔPAB,ΔPCD都是以P为直角
顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形
[证明]以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及
CiB
Q
复数乘法的几何意义知D=iC,B=iA;取1i,则C-Q=i(B-Q),则ΔBCQ为等腰直角三
DQi(AQ)
角形;又由C-Q=i(B-Q)得i i ,即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角
形且以Q为直角顶点。综上命题得证。
例14平面上给定ΔA1A2A3及点p0,定义As=As-3,s≥4,构造点列p0,p1,p2,⋯,使得pk+1为绕中心Ak+1顺时针旋转1200时pk所到达的位置,k=0,1,2,⋯,若p1986=p0.证明:ΔA1A2A3为等边三角形。
i
3
[证明]令u=e3,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,
p2=(1+u)A2-up1,
p3=(1+u)A3-up2,
①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,⋯,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。
三、趋近高考【必懂】
n
1.(2009年广东卷文)下列n的取值中,使i=1(i是虚数单位)的是 ()
A.n=2B.n=3C.n=4 D.n=5
4
【解析】因为i41,故选C.
答案C
2.(2009广东卷理)设z是复数,a(z)表示满足zn1的最小正整数n,则对虚数单位i,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 溃疡性口腔炎病因介绍
- 《DIY热场活动》课件
- 2024年中考英语复习冲刺过关专题10 语法填空(解析版)
- 《假如人类也有尾巴》课件
- 开题报告:艺术设计下中国壮族地区中小学民族文化传承机制与发展策略研究
- 明挖管道深基坑开挖专项施工方案
- 开题报告:新中国高等教育援疆政策的变迁逻辑与内生转型研究
- 开题报告:新时代教育公平视角下基础教育集团办学质量评估模型与监测研究
- 2024医疗保险医疗服务合同
- 《温度调节系统》课件
- 甲状腺癌科普健康知识讲座
- 哲学与人生总复习
- 福建省泉州市2022-2023学年高一上学期期末教学质量监测化学试题(含答案)
- 物业环境管理服务标准及措施方案
- 卫生洁具采购与安装投标方案(技术标)
- 平整土地施工方案及方法
- 人教部编版三年级上册语文【选择题】专项复习训练练习100题
- 绿色环保生产工艺
- 核医学核医学物理基础
- 建筑地基处理技术规范
- 《护理健康教育》课件
评论
0/150
提交评论