2017~2018学年中考数学复习专题《特殊平行四边形》有试题解答_第1页
2017~2018学年中考数学复习专题《特殊平行四边形》有试题解答_第2页
2017~2018学年中考数学复习专题《特殊平行四边形》有试题解答_第3页
2017~2018学年中考数学复习专题《特殊平行四边形》有试题解答_第4页
2017~2018学年中考数学复习专题《特殊平行四边形》有试题解答_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

...wd......wd......wd...2017---2018学年中考数学复习专题--?特殊平行四边形评卷人得分一.选择题〔共12小题〕1.以下性质中,菱形具有而平行四边形不具有的性质是〔〕A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补2.能判定一个四边形是菱形的条件是〔〕A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角3.矩形具有而菱形不一定具有的性质是〔〕A.对边分别相等 B.对角分别相等C.对角线互相平分 D.对角线相等4.以下条件不能判别四边形ABCD是矩形的是〔〕A.AB=CD,AD=BC,∠A=90° B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是〔〕A.相等 B.互相垂直C.相等且互相垂直 D.相等且互相平分6.菱形的两条对角线长分别是6cm和8cm,那么菱形的边长是〔〕A.12cm B.10cm C.7cm D.5cm7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,假设BF=12,AB=10,那么AE的长为〔〕A.16 B.15 C.14 D.138.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,假设AB=2,BC=3,那么EF:GH=〔〕A.2:3 B.3:2 C.4:9 D.无法确定9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,那么线段EF的最小值为〔〕A.12 B.6 C.12.5 D.2510.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,那么∠CDF为〔〕A.80° B.70° C.65° D.60°11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,那么∠FPC的度数为〔〕A.55° B.50° C.45° D.35°12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.假设∠COB=60°,FO=FC,那么以下结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是〔〕A.1 B.2 C.3 D.4评卷人得分二.填空题〔共6小题〕13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,那么∠DEC等于度.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,那么菱形ABCD的面积为.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,那么DE的长是.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.以下结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的选项是.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,那么∠2=.18.如以下列图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,那么PE+PF的值为.评卷人得分三.解答题〔共6小题〕19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.〔1〕证明:四边形ADCE为菱形.〔2〕BC=6,AB=10,求菱形ADCE的面积.20.,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.〔1〕求证:四边形AECF为矩形;〔2〕试猜想MN与BC的关系,并证明你的猜想;〔3〕如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.〔1〕判断△BEC的形状,并说明理由〔2〕判断四边形EFPH是什么特殊四边形并证明你的判断;〔3〕求四边形EFPH的面积.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.〔1〕求证:BD=DF;〔2〕求证:四边形BDFG为菱形;〔3〕假设AG=13,CF=6,求四边形BDFG的周长.2017---2018学年中考数学复习专题--?特殊平行四边形?参考答案与试题解析一.选择题〔共12小题〕1.以下性质中,菱形具有而平行四边形不具有的性质是〔〕A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.应选C.2.能判定一个四边形是菱形的条件是〔〕A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角【解答】解:∵对角线互相垂直平分的四边形是菱形.∴A、B、D都不正确.∵对角相等的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形.故C正确.应选C.3.矩形具有而菱形不一定具有的性质是〔〕A.对边分别相等 B.对角分别相等C.对角线互相平分 D.对角线相等【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;菱形的性质有:①菱形的四条边都相等,且对边平行,②菱形的对角相等,③菱形的对角线互相平分、垂直,且每一条对角线平分一组对角;∴矩形具有而菱形不一定具有的性质是对角线相等,应选D.4.以下条件不能判别四边形ABCD是矩形的是〔〕A.AB=CD,AD=BC,∠A=90° B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;应选D.5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是〔〕A.相等 B.互相垂直C.相等且互相垂直 D.相等且互相平分【解答】解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;②原四边形对角线互相垂直,所得的四边形是矩形;③原四边形对角线既相等又垂直,所得的四边形是正方形;④原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.应选A.6.菱形的两条对角线长分别是6cm和8cm,那么菱形的边长是〔〕A.12cm B.10cm C.7cm D.5cm【解答】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.应选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,假设BF=12,AB=10,那么AE的长为〔〕A.16 B.15 C.14 D.13【解答】解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.应选:A.8.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,假设AB=2,BC=3,那么EF:GH=〔〕A.2:3 B.3:2 C.4:9 D.无法确定【解答】解:过F作FM⊥AB于M,过H作HN⊥BC于N,那么∠4=∠5=90°=∠AMF∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,∴四边形AMFD是矩形,∴FM∥AD,FM=AD=BC=3,同理HN=AB=2,HN∥AB,∴∠1=∠2,∵HG⊥EF,∴∠HOE=90°,∴∠1+∠GHN=90°,∵∠3+∠GHN=90°,∴∠1=∠3=∠2,即∠2=∠3,∠4=∠5,∴△FME∽△HNG,∴==∴EF:GH=AD:CD=3:2.应选B.9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,那么线段EF的最小值为〔〕A.12 B.6 C.12.5 D.25【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===25,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CP,即×20×15=×25•CP,解得CP=12.应选A.10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,那么∠CDF为〔〕A.80° B.70° C.65° D.60°【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.应选D.11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,那么∠FPC的度数为〔〕A.55° B.50° C.45° D.35°【解答】解:延长PF交AB的延长线于点G.如以下列图:在△BGF与△CPF中,,∴△BGF≌△CPF〔ASA〕,∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=〔180°﹣70°〕=55°,∴∠FPC=55°;应选:A.12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.假设∠COB=60°,FO=FC,那么以下结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是〔〕A.1 B.2 C.3 D.4【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中∴△OBF≌△CBF〔SSS〕,∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴MB=,OF=,∵OE=OF,∴MB:OE=3:2,∴④正确;应选:C.二.填空题〔共6小题〕13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,那么∠DEC等于75度.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣〔∠CDE+∠C〕=75°.故答案为:75.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,那么菱形ABCD的面积为4.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,那么DE的长是3.【解答】解:如图,连接CE,,设DE=x,那么AE=8﹣x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8﹣x,在Rt△CDE中,x2+42=〔8﹣x〕2解得x=3,∴DE的长是3.故答案为:3.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.以下结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的选项是①②④.【解答】解:令GF和AC的交点为点P,如以下列图:∵E、F分别是OC、OD的中点,∴EF∥CD,且EF=CD,∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠FEG=∠BGE〔两直线平行,内错角相等〕,∵点G为AB的中点,∴BG=AB=CD=FE,在△EFG和△GBE中,,∴△EFG≌△GBE〔SAS〕,即②成立,∴∠EGF=∠GEB,∴GF∥BE〔内错角相等,两直线平行〕,∵BD=2BC,点O为平行四边形对角线交点,∴BO=BD=BC,∵E为OC中点,∴BE⊥OC,∴GP⊥AC,∴∠APG=∠EPG=90°∵GP∥BE,G为AB中点,∴P为AE中点,即AP=PE,且GP=BE,在△APG和△EGP中,,∴△APG≌△EPG〔SAS〕,∴AG=EG=AB,∴EG=EF,即①成立,∵EF∥BG,GF∥BE,∴四边形BGFE为平行四边形,∴GF=BE,∵GP=BE=GF,∴GP=FP,∵GF⊥AC,∴∠GPE=∠FPE=90°在△GPE和△FPE中,,∴△GPE≌△FPE〔SAS〕,∴∠GEP=∠FEP,∴EA平分∠GEF,即④成立.故答案为:①②④.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,那么∠2=30°.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AB=BE,∠ABE=90°,∴∠BAE=∠AEB=45°,∵∠1=15°,∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB﹣∠AEB=30°,故答案为:30°.18.如以下列图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,那么PE+PF的值为.【解答】解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S△AOD=S△DOC=S△AOB=S△BOC=S矩形ABCD=×6×8=12,在Rt△BAD中,由勾股定理得:BD===10,∴AO=OD=5,∵S△APO+S△DPO=S△AOD,∴×AO×PE+×DO×PF=12,∴5PE+5PF=24,PE+PF=,故答案为:.三.解答题〔共6小题〕19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.〔1〕证明:四边形ADCE为菱形.〔2〕BC=6,AB=10,求菱形ADCE的面积.【解答】证明:〔1〕∵在Rt△ABC中,∠ACB=90°,D为AB中点,∴CD=AB=AD,又∵AE∥CD,CE∥AB∴四边形ADCE是平行四边形,∴平行四边形ADCE是菱形;〔2〕在Rt△ABC中,AC===8.∵平行四边形ADCE是菱形,∴CO=OA,又∵BD=DA,∴DO是△ABC的中位线,∴BC=2DO.又∵DE=2DO,∴BC=DE=6,∴S菱形ADCE===24.20.,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.【解答】答:四边形BFDE的形状是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.【解答】证明:∵DE⊥AC,DG⊥AB,EK⊥AB,GH⊥AC,∴∠DGB=∠DEC=90°,EK∥DG,DE∥GH,∴四边形DEFG是平行四边形,∵AB=AC,∴∠B=∠C,在△DGB和△DEC中,,∴△DGB≌△DEC〔AAS〕,∴DG=DE,∵四边形DEFG是平行四边形,∴四边形DEFG是菱形,∴GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.〔1〕求证:四边形AECF为矩形;〔2〕试猜想MN与BC的关系,并证明你的猜想;〔3〕如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.【解答】〔1〕证明:∵AE⊥CE于E,AF⊥CF于F,∴∠AEC=∠AFC=90°,又∵CE、CF分别平分∠ACB与它的邻补角∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∴∠ACE+∠ACF=〔∠BCE+∠ACE+∠ACF+∠DCF〕=×180°=90°,∴三个角为直角的四边形AECF为矩形.〔2〕结论:MN∥BC且MN=BC.证明:∵四边形AECF为矩形,∴对角线相等且互相平分,∴NE=NC,∴∠NEC=∠ACE=∠BCE,∴MN∥BC,又∵AN=CN〔矩形的对角线相等且互相平分〕,∴N是AC的中点,假设M不是AB的中点,那么可在AB取中点M1,连接M1N,那么M1N是△ABC的中位线,MN∥BC,而MN∥BC,M1即为点M,所以MN是△ABC的中位线〔也可以用平行线等分线段定理,证明AM=BM〕∴MN=BC;法二:延长MN至K,使NK=MN,因为对角线互相平分,所以AMCK是平行四边形,KC∥M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论