余弦函数的图像和性质电子版本_第1页
余弦函数的图像和性质电子版本_第2页
余弦函数的图像和性质电子版本_第3页
余弦函数的图像和性质电子版本_第4页
余弦函数的图像和性质电子版本_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§6余弦(yúxián)函数的图像与性质第一页,共53页。问题引航1.如何得到余弦函数的图像?什么是余弦曲线?2.余弦函数有哪些性质?如何利用这些性质解题?第二页,共53页。1.余弦函数(hánshù)图像的画法(1)平移法:左第三页,共53页。(2)五点法:①五个关键点:②函数(hánshù)y=cosx,x∈[0,2π]的简图:x0π2πcosx___________10-101第四页,共53页。(3)余弦曲线:y=cosx(x∈[0,2π])的图像向左、向右平行移动(yídòng)(每次平移____个单位)得到余弦函数y=cosx(x∈R)的图像,此图像叫作余弦曲线.2π第五页,共53页。2.余弦(yúxián)函数的性质函数性质余弦函数y=cosx图像定义域R值域[-1,1]第六页,共53页。函数性质余弦函数y=cosx最值当x=2kπ(k∈Z)时,ymax=1当x=(2k+1)π(k∈Z)时,ymin=-1周期性是周期函数,最小正周期为____奇偶性是偶函数,图像关于y轴对称单调性在[(2k-1)π,2kπ](k∈Z)上是_____的在[2kπ,(2k+1)π](k∈Z)上是_____的2π增加(zēngjiā)减少(jiǎnshǎo)第七页,共53页。1.判一判(正确的打“√”,错误的打“×”)(1)余弦函数y=cosx是偶函数,图像关于(guānyú)y轴对称,对称轴有无数多条.()(2)余弦函数y=cosx的图像是轴对称图形,也是中心对称图形.()(3)在区间[0,2π]上,函数y=cosx仅在x=0时取得最大值1.()第八页,共53页。2.做一做(请把正确的答案(dáàn)写在横线上)(1)函数y=|cosx|的单调增区间是________,单调减区间是________,最小正周期是________.(2)函数y=2cosx-1的值域是________.(3)函数y=f(x)=-cosx的奇偶性为________.第九页,共53页。【解析】1.(1)正确.由余弦(yúxián)函数的图像可得,对称轴方程为x=kπ(k∈Z),所以余弦(yúxián)函数的图像的对称轴有无数条.(2)正确.由余弦(yúxián)函数的图像可得函数关于点(k∈Z)成中心对称.(3)错误.在区间[0,2π]上,函数y=cosx在x=0与x=2π时取得最大值1.答案:(1)√(2)√(3)×第十页,共53页。2.(1)y=cosx的图像在x轴上方的不动,将下方部分对称地翻到x轴上方,即得到(dédào)函数y=|cosx|的图像,如图所示,第十一页,共53页。由图像(túxiànɡ)可知,函数的最小正周期为π,又因为在上,函数的增区间是减区间是而函数的周期是kπ(k∈Z且k≠0),因此函数y=|cosx|的增区间是(k∈Z),减区间是(k∈Z).答案:第十二页,共53页。(2)因为y=cosx∈[-1,1],所以2cosx-1∈[-3,1].答案(dáàn):[-3,1](3)函数y=-cosx的定义域为R,f(-x)=-cos(-x)=-cosx=f(x),所以函数为偶函数.答案(dáàn):偶函数第十三页,共53页。【要点探究】知识点余弦(yúxián)函数的图像与性质1.余弦(yúxián)函数性质与图像的关系(1)余弦(yúxián)函数性质的研究可以类比正弦函数的研究方法.(2)余弦(yúxián)函数的性质可以由图像直接观察,但要经过解析式或单位圆推导才能下结论.第十四页,共53页。2.对余弦函数单调性的三点说明(1)余弦函数在定义域R上不是(bùshi)单调函数,但存在单调区间.(2)求解或判断余弦函数的单调区间(或单调性),是求与之相关的值域(或最值)的关键,通常借助其求值域(或最值).(3)确定较复杂函数的单调性,要注意使用复合函数单调性的判断方法.第十五页,共53页。3.余弦函数的最值(1)明确余弦函数的有界性,即|cosx|≤1,解题时常会用到.(2)对有些函数,其最值不一定(yīdìng)就是1或-1,要依赖函数的定义域来确定.(3)形如y=Acos(ωx+φ)(A>0,ω>0)的函数求最值时,通常利用“整体代换”,即令ωx+φ=z,将函数转化为y=Acosz的形式求最值.第十六页,共53页。【微思考】(1)由y=sinx,x∈R的图像得到y=cosx,x∈R的图像,平移(pínɡyí)的方法唯一吗?提示:可向左平移(pínɡyí)也可向右平移(pínɡyí),方法不唯一.(2)形如y=Acos(ωx+φ)(A>0,x∈R)的值域还是[-1,1]吗?提示:不一定是.值域是[-A,A].第十七页,共53页。【即时(jíshí)练】下列关于函数y=-3cosx-1的说法错误的是()A.最小值为-4B.是偶函数C.当x=kπ,k∈Z时,函数取最大值D.是周期函数,最小正周期为2π【解析】选C.当x=kπ,k∈Z时,y=cosx取到最大值1,而函数y=-3cosx-1取最小值.第十八页,共53页。【题型示范】类型一“五点法”画余弦函数的图像(túxiànɡ)【典例1】(1)利用“五点法”作余弦函数的图像(túxiànɡ)时,第三个关键点的坐标为()A.(0,1)B.C.(π,-1)D.(2)用“五点法”作出y=1+cosx(0≤x≤2π)的简图.第十九页,共53页。【解题探究】1.对余弦(yúxián)函数而言,五点法作图的五个点的坐标分别是什么?2.题(2)中函数y=1+cosx的最大值与最小值分别等于什么?【探究提示】1.五个点分别为(0,1),,(π,-1),,(2π,1).2.因为cosx∈[-1,1],所以1+cosx∈[0,2],即最大值为2,最小值为0.第二十页,共53页。【自主解答(jiědá)】(1)选C.由五个点的坐标知第三个关键点为(π,-1).(2)列表如下:x0π2πy=cosx10-101y=1+cosx21012第二十一页,共53页。描点连线(liánxiàn),可得函数y=1+cosx在[0,2π]上的图像如图所示:第二十二页,共53页。【方法技巧】“五点法”画函数(hánshù)图像的三个步骤第二十三页,共53页。【变式训练】作出函数y=1-cosx(0≤x≤2π)的简图.【解题指南】将[0,2π]这一区间四等(sìděnɡ)分找到五个关键点然后描点、连线即可.【解析】列表:x0π2πy=cosx10-101y=1-cosx01210第二十四页,共53页。描点连线(liánxiàn)得y=1-cosx的图像(如图所示).第二十五页,共53页。【补偿训练】“五点法”画y=cos时,所取的五个点为_______.【解题指南】把作为(zuòwéi)一个整体看作是y=cosx中的x可得五点.第二十六页,共53页。即五个点分别(fēnbié)为:答案:0π

x

10-101【解析(jiěxī)】列表可得:第二十七页,共53页。类型二余弦(yúxián)函数的奇偶性及应用【典例2】(1)(2013·佛山高一检测)函数f(x)=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ的值为()A.0B.C.D.π(2)(2014·绵阳高一检测)函数f(x)=sin(2x+)的奇偶性为_________.(3)已知函数y=f(x)是定义在R上的奇函数,当x>0时,f(x)=sin2x+cosx,求f(x).第二十八页,共53页。【解题探究】1.f(x)为R上的偶函数应具备什么条件?2.利用诱导公式化简sin(2x+)等于什么?3.题(3)中已知函数f(x)为奇函数,求f(x)的一般原则是什么?【探究提示】1.应满足(mǎnzú)f(-x)=f(x).2.3.先求x=0时的解析式,再求x<0时的解析式,对定义域内的取值要完整.第二十九页,共53页。【自主解答】(1)选C.当φ=0或π时,f(x)为奇函数,当φ=时,为非奇非偶函数.只有当φ=时符合(fúhé)题意,故选C.(2)因为=-sin(2x+)=-cos2x,所以f(-x)=-cos(-2x)=-cos2x=f(x),即f(x)为偶函数.答案:偶函数第三十页,共53页。(3)因为函数y=f(x)是定义(dìngyì)在R上的奇函数,所以f(-x)=-f(x),所以f(0)=-f(0),f(0)=0,当x<0时,-x>0,所以f(x)=-f(-x)=-[sin2(-x)+cos(-x)]=sin2x-cosx,所以第三十一页,共53页。【方法技巧】余弦函数奇偶性常用结论(1)因为余弦函数是偶函数,所以(suǒyǐ)cosx=cos|x|.(2)y=cos(x+φ),当φ=kπ+(k∈Z)时是奇函数;y=sin(x+φ),当φ=kπ+(k∈Z)时是偶函数.(3)余弦函数的对称轴和对称中心①对称轴方程为x=kπ(k∈Z).②对称中心的坐标为(+kπ,0)(k∈Z).第三十二页,共53页。【变式训练(xùnliàn)】函数f(x)=x2+cosx的奇偶性为______.【解析】因为x∈R,且f(-x)=(-x)2+cos(-x)=x2+cosx=f(x),所以函数f(x)是偶函数.答案:偶函数第三十三页,共53页。【补偿训练】函数y=cos(sinx)的奇偶性是________.【解析(jiěxī)】函数定义域为R,又cos[sin(-x)]=cos(-sinx)=cos(sinx),所以函数为偶函数.答案:偶函数第三十四页,共53页。类型三余弦函数的单调性与最值【典例3】(1)函数y=cos2x的一个(yīɡè)增区间是()(2)求函数y=3cos2x-4cosx+1的最大值和最小值.第三十五页,共53页。【解题探究(tànjiū)】1.题(1)中涉及的函数是哪种?2.题(2)中若将cosx变为t,则函数变为什么?【探究(tànjiū)提示】1.涉及的函数是余弦函数.2.函数变为y=3t2-4t+1.第三十六页,共53页。【自主解答(jiědá)】(1)选D.令2kπ-π≤2x≤2kπ,k∈Z,所以kπ-≤x≤kπ,当k=1时,x∈[,π].(2)令t=cosx,则-1≤t≤1,问题转化为求函数y=3t2-4t+1(-1≤t≤1)的最大值和最小值.因为所以函数在[-1,]上是减少的,在[,1]上是增加的,第三十七页,共53页。当t=时,y有最小值;当t=-1时,y有最大值,所以(suǒyǐ)ymax=3+4+1=8.所以(suǒyǐ)函数的最大值为8,最小值为-.第三十八页,共53页。【延伸(yánshēn)探究】若将本题(2)增加条件x∈求最大值和最小值.【解析】令t=cosx,则y=因为x∈所以t∈函数在区间上是减少的.所以当t=-即cosx=-时,ymax=,此时x=.当t=即x=时,ymin=-.第三十九页,共53页。【方法技巧】求函数最大值、最小值的方法(1)直接(zhíjiē)法:根据函数值域的定义,由自变量的取值范围求出函数值的取值范围.(2)单调性法:利用函数的单调性.(3)图像法:利用函数的图像,转化为求函数图像上最高点和最低点的纵坐标的问题.(4)换元法:转化为一次函数、二次函数等函数问题.第四十页,共53页。【变式训练】函数y=4cos2x+4cosx-2的值域为()A.[-2,6]B.[-3,6]C.[-2,4]D.[-3,8]【解题(jiětí)指南】利用换元法将函数变为二次函数,利用二次函数求最值.第四十一页,共53页。【解析】选B.设cosx=t,则y=4cos2x+4cosx-2=4t2+4t-2=4(t2+t)-2=4(t+)2-3.因为(yīnwèi)-1≤cosx≤1,所以-1≤t≤1,所以ymin=-3,第四十二页,共53页。【补偿训练(xùnliàn)】求函数y=2cos(2x+),x∈的最大值与最小值.【解析】因为所以0≤2x+所以-1≤2cos(2x+)≤2,当cos(2x+)=1,即x=-时,ymax=2,当cos(2x+)=-,即x=时,ymin=-1.第四十三页,共53页。【规范解答】余弦函数值域的应用【典例】(12分)(2014·榆林高一检测(jiǎncè))已知函数y=a-bcosx的最大值为,最小值为-,求函数y=-2sinbx的最值及周期.第四十四页,共53页。【审题】抓信息(xìnxī),找思路第四十五页,共53页。【解题(j

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论