版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《离散型随机变量及其分布列》同步练习考点随机变量及其分布2.(2022天津,16,13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.解析(1)由已知,有P(A)==.所以,事件A发生的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=(k=1,2,3,4).所以,随机变量X的分布列为X1234P随机变量X的数学期望E(X)=1×+2×+3×+4×=.3.(2022重庆,17,13分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.解析(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.(2)X的所有可能值为0,1,2,且P(X=0)==,P(X=1)==,P(X=2)==.综上知,X的分布列为X012P故E(X)=0×+1×+2×=(个).4.(2022湖北,20,12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品,生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶吨,使用设备小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W121518P该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.解析(1)设每天A,B两种产品的生产数量分别为x吨,y吨,相应的获利为z元,则有(1)目标函数为z=1000x+1200y.当W=12时,(1)表示的平面区域如图1,三个顶点分别为A(0,0),B,,C(6,0).当z=1000x+1200y变形为y=-x+,当x=,y=时,直线l:y=-x+在y轴上的截距最大,最大获利Z=zmax=×1000+×1200=8160.当W=15时,(1)表示的平面区域如图2,三个顶点分别为A(0,0),B(3,6),C,0).将z=1000x+1200y变形为y=-x+,当x=3,y=6时,直线l:y=-x+在y轴上的截距最大,最大获利Z=zmax=3×1000+6×1200=10200.当W=18时,(1)表示的平面区域如图3,四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).将z=1000x+1200y变形为y=-x+,当x=6,y=4时,直线l:y=-x+在y轴上的截距最大,最大获利Z=zmax=6×1000+4×1200=10800.故最大获利Z的分布列为Z81601020010800P因此,E(Z)=8160×+10200×+10800×=9708.(2)由(1)知,一天最大获利超过10000元的概率p1=P(Z>10000)=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为p=1-(1-p1)3==.5.(2022湖南,18,12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.解析(1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意,A1与A2相互独立,A1与A2互斥,B1与B2互斥,且B1=A1A2,B2=A1+A2,C=B1+B2.因为P(A1)==,P(A2)==,所以P(B1)=P(A1A2)=P(A1)P(A2)=×=,P(B2)=P(A1+A2)=P(A1)+P(A2)=P(A1)P()+P()P(A2)=P(A1)[1-P(A2)]+[1-P(A1)]P(A2)=×+×=.故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=+=.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,所以X~B.于是P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为X0123PX的数学期望为E(X)=3×=.6.(2022陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟)25303540频数(次)20304010(1)求T的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解析(1)由统计结果可得T的频率分布为T(分钟)25303540频率以频率估计概率得T的分布列为T25303540P从而ET=25×+30×+35×+40×=32(分钟).(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=×1+×1+×+×=.解法二:P()=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=×+×+×=.故P(A)=1-P()=.7.(2022四川,17,12分)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.解析(1)由题意,参加集训的男、女生各有6名.参赛学生全从B中学抽取(等价于A中学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2026)执业药师中医试题解析及答案
- 2025至2030消费级3D打印设备市场需求分化与价格策略研究报告
- 2026校招:贵州磷化集团试题及答案
- 2025-2030服装零售市场消费者行为趋势评估产业发展框架规划分析研究
- 2025-2030服装行业发展趋势与投资前景研究报告
- 2025-2030服装纺织产业集群与品牌营销市场分析研究报告
- 2025-2030服装时尚行业市场供需调研竞争格局创新投资规划分析报告
- 2025-2030服装品牌营销市场调研与发展趋势及投资价值预测报告
- 2025-2030服装制造企业品牌发展现状市场调研规划研究报告
- 2025-2030服务机器人情感交互模块技术发展趋势预测
- 2025至2030中国电子设备电磁防护解决方案市场调研与商业机会分析报告
- 2026年芜湖职业技术学院高职单招职业适应性测试参考题库带答案解析
- 2026年春节放假安全培训:平安过大年防风险保祥和
- 矛盾纠纷排查调处台账管理规范文件
- 猪肉儿童营养食品创新创业项目商业计划书
- 2025至2030年中国干葡萄酒行业发展研究报告
- 北京市建设工程施工现场安全生产标准化管理图集(2019版)
- 提高治疗前肿瘤TNM评估率工作方案
- 庆阳网约车考试指南
- 你画我猜题目大全
- 《影视广告制作基础》-02影视广告的创意与构思课件
评论
0/150
提交评论