版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年内蒙古自治区巴彦淖尔市普通高校对口单招高等数学一自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),则在(0,1)内曲线y=f(x)的所有切线中().A.A.至少有一条平行于x轴B.至少有一条平行于y轴C.没有一条平行于x轴D.可能有一条平行于y轴
2.
A.
B.
C.
D.
3.
4.设y=5x,则y'等于().
A.A.
B.
C.
D.
5.设f(x)在点x0的某邻域内有定义,且,则f'(x0)等于().A.-1B.-1/2C.1/2D.1
6.方程x2+2y2-z2=0表示的曲面是()A.A.椭球面B.锥面C.柱面D.平面
7.在空间中,方程y=x2表示()A.xOy平面的曲线B.母线平行于Oy轴的抛物柱面C.母线平行于Oz轴的抛物柱面D.抛物面
8.
9.
10.曲线y=lnx-2在点(e,-1)的切线方程为()A.A.
B.
C.
D.
11.
12.方程2x2-y2=1表示的二次曲面是().A.A.球面B.柱面C.旋转抛物面D.圆锥面
13.钢筋混凝土轴心受拉构件正截面承载力计算时,用以考虑纵向弯曲弯曲影响的系数是()。
A.偏心距增大系数B.可靠度调整系数C.结构重要性系数D.稳定系数
14.设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为()。A.
B.
C..
D.不能确定
15.()。A.e-2
B.e-2/3
C.e2/3
D.e2
16.下列关系正确的是()。A.
B.
C.
D.
17.
18.幂级数的收敛半径为()A.1B.2C.3D.4
19.设函数f(x)在x=1处可导,且,则f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/2
20.
二、填空题(20题)21.
22.
23.过点Mo(1,-1,0)且与平面x-y+3z=1平行的平面方程为_______.
24.
25.
26.为使函数y=arcsin(u+2)与u=|x|-2构成复合函数,则x所属区间应为__________.
27.
28.
29.
30.
31.
32.
33.设y=2x2+ax+3在点x=1取得极小值,则a=_____。
34.
35.设z=x3y2,则=________。
36.
37.
38.=______.
39.
40.函数f(x)=x2在[-1,1]上满足罗尔定理的ξ=_________。
三、计算题(20题)41.求微分方程y"-4y'+4y=e-2x的通解.
42.
43.
44.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
45.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
46.将f(x)=e-2X展开为x的幂级数.
47.求微分方程的通解.
48.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
49.
50.求函数f(x)=x3-3x+1的单调区间和极值.
51.
52.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
53.
54.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
55.当x一0时f(x)与sin2x是等价无穷小量,则
56.
57.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
58.
59.求曲线在点(1,3)处的切线方程.
60.证明:
四、解答题(10题)61.
62.
63.求y"-2y'-8y=0的通解.
64.
65.
66.
67.
68.设
69.
70.设z=z(x,y)由ez-z+xy=3所确定,求dz。
五、高等数学(0题)71.函数f(x)=xn(a≠0)的弹性函数为g(x)=_________.
六、解答题(0题)72.
参考答案
1.A本题考查的知识点有两个:罗尔中值定理;导数的几何意义.
由题设条件可知f(x)在[0,1]上满足罗尔中值定理,因此至少存在一点ξ∈(0,1),使f'(ξ)=0.这表明曲线y=f(x)在点(ξ,f(ξ))处的切线必定平行于x轴,可知A正确,C不正确.
如果曲线y=f(x)在点(ξ,f(ξ))处的切线平行于y轴,其中ξ∈(0,1),这条切线的斜率为∞,这表明f'(ξ)=∞为无穷大,此时说明f(x)在点x=ξ不可导.因此可知B,D都不正确.
本题对照几何图形易于找出解答,只需依题设条件,画出一条曲线,则可以知道应该选A.
有些考生选B,D,这是由于不明确导数的几何意义而导致的错误.
2.B
3.B
4.C本题考查的知识点为基本初等函数的求导.
y=5x,y'=5xln5,因此应选C.
5.B由导数的定义可知
可知,故应选B。
6.B对照二次曲面的标准方程可知,所给曲面为锥面,因此选B.
7.C方程F(x,y)=0表示母线平行于Oz轴的柱面,称之为柱面方程,故选C。
8.A
9.C
10.D
11.B解析:
12.B本题考查的知识点为识别二次曲面方程.
由于二次曲面的方程中缺少一个变量,因此它为柱面方程,应选B.
13.D
14.B本题考查的知识点为定积分的几何意义。由定积分的几何意义可知应选B。常见的错误是选C。如果画个草图,则可以避免这类错误。
15.B
16.B由不定积分的性质可知,故选B.
17.B
18.A由于可知收敛半径R==1.故选A。
19.B本题考查的知识点为可导性的定义.
当f(x)在x=1处可导时,由导数定义可得
可知f'(1)=1/4,故应选B.
20.A
21.(1+x)ex(1+x)ex
解析:
22.
23.由于已知平面的法线向量,所求平面与已知平面平行,可取所求平面法线向量,又平面过点Mo(1,-1,0),由平面的点法式方程可知,所求平面为
24.
25.
本题考查的知识点为定积分的换元法.
26.[-1,1
27.e1/2e1/2
解析:
28.
29.
30.1.
本题考查的知识点为函数连续性的概念.
31.e-1/2
32.
33.
34.本题考查的知识点为重要极限公式。
35.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。
36.y=-x+1
37.1/2
38.本题考查的知识点为定积分的换元积分法。设t=x/2,则x=2t,dx=2dt.当x=0时,t=0;当x=π时,t=π/2。因此
39.(-35)(-3,5)解析:
40.0
41.解:原方程对应的齐次方程为y"-4y'+4y=0,
42.
43.
44.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
45.
列表:
说明
46.
47.
48.
49.
50.函数的定义域为
注意
51.由一阶线性微分方程通解公式有
52.
53.
54.由二重积分物理意义知
55.由等价无穷小量的定义可知
56.
则
57.
58.
59.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基层死因监测培训-乡镇及村培训案例
- 2023年直播电商行业调研分析报告
- 医院保洁员培训
- 舒伯职业生涯发展理论
- 儿科血友病教学查房
- 小学二年级数学100以内加减法竖式计算同步作业训练题
- 计算函数y=24x8+13x+arcsin4.x的导数
- 心理一社会状况哮喘病人的性格特征以自我为中心依赖性强过分
- 凝血功能障碍护理问题
- 元宵节亲子活动
- 有效教学 崔允漷 读书汇报
- 铝合金模板工程设计与施工专项方案技术交底
- 新材料产业产品和服务统计指导目录
- 抗病毒治疗依从性教育培训会
- 《建设工程监理合同(示范文本)》(GF-2012-0202)
- 肩周炎的治疗及护理
- 通信工程投标专家继续教育题库(附答案)
- 2023年01月四川凉山州木里重点国有林保护局招考聘用18人参考题库+答案详解
- 三垦变频器使用说明书SAMCO
- YBT-4190-2018-工程用机编钢丝网及组合体
- 加油站全年12月消防灭火疏散应急演练
评论
0/150
提交评论