版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学必修1复习1函数概念及性质结构图函数概念及性质函数概念与表示单调性与最值奇偶性21、已知函数f(x)=x+2,(x≤-1)x2,(-1<x<2)2x,(x≥2)若f(x)=3,则x的值是()A.1B.1或C.1,,D.D3函数f(x)在给定区间上为增函数。Oxy如何用x与f(x)来描述上升的图象?如何用x与f(x)来描述下降的图象?函数f(x)在给定区间上为减函数。Oxy45证明:设x1,x2∈(0,+∞),且x1<x2,则1-1-1Oxy1f(x)在定义域
上是减函数吗?减函数例1:判断函数f(x)=1/x在区间(0,+∞)上是增函数还是减函数?并证明你的结论。6Oxy11解:函数f(x)=x2+1在(0,+∞)上是增函数.下面给予证明:设x1,x2∈(0,+∞),且x1<x2∴函数f(x)=x2+1在(0,+∞)上是增函数.例2:证明函数f(x)=x2+1在区间(0,+∞)上是增函数还是减函数?并给予证明。7若二次函数
在区间
上单调递增,求a的取值范围。
解:二次函数的对称轴为,由图象可知只要,即即可.
oxy1xy1o练习8已知函数y=|x2-x|,(1)作出函数的草图;(2)写出函数的单调区间。xyo1由图知:此函数的单调递增区间为单调递减区间为9y1O1x10解设:则:对任意的有又∵是减函数∴在是减函数同理在是增函数函数的单调区间,并证明.11设函数f(x)在(-∞,0)∪(0,+∞)上是奇函数,又f(x)在(0,+∞)上是减函数,并且f(x)<0,指出F(x)=在(-∞,0)上的增减性?并证明。解:设-∞<x1<x2<0
则0<-x2<-x1<+∞∵f(x)在(0,+∞)上是减函数∴f(-x1)<f(-x2)又∵f(x)在(-∞,0)∪(0,+∞)上是奇函数∴-f(x1)<-f(x2)又F(x1)-F(x2)∵f(x)在(0,+∞)上有f(x)<0且-∞<x1<x2<0∴f(x1)=-f(-x1)>0,f(x2)=-f(-x2)>0又∵f(x1)>f(x2)∴F(x1)-F(x2)<0即F(x1)<F(x2)
故F(x)在(-∞,0)上是增函数12关于原点对称关于y轴对称奇函数偶函数OO13函数奇偶性的定义:如果对于函数f(x)的定义域内任意的一个x,都有:(1)f(-x)=-f(x),则称y=f(x)为奇函数(2)f(-x)=f(x),则称y=f(x)为偶函数14注:1、奇、偶函数的定义域一定关于原点对称。判断下列函数的奇偶性定义域不对称的函数无奇偶性,既不是奇函数也不是偶函数。15注:2、定义域对称的零函数,既是奇函数也是偶函数判断下列函数的奇偶性定义域对称的非零常数函数仅是偶函数,而零函数既是奇函数又是偶函数1617已知f(x)是奇函数,当x≥0时,f(x)=x2-2x,求当x<0时,f(x)的解析式,并画出此函数f(x)的图象。xyo解:∵f(x)是奇函数∴f(-x)=-f(x)即f(x)=-f(-x)∵当x≥0时,f(x)=x2-2x∴当x<0时,f(x)=-f(-x)=-[(-x)2-2(-x)]=-(x2+2x)18已知函数f(x)=x2+2x-3,作出下列函数的图象:1)y=f(x)2)y=f(|x|)3)y=|f(x)|xyo-31xyoxyo-31-31-1-4-1-4-1-441920设f(x)定义域为[0,1],则f(2x+1)的定义域为
。函数f(x)为定义在R上的奇函数,在(0,+∞)上单调递增,且f(3)=0,则不等式f(x)>0的解集为
。3-3提示:可以描绘大致图形如右(-3,0)∪(3,+∞)21基本初等函数基本初等函数指数函数对数函数幂函数22指数函数与对数函数函数y=ax(a>0且a≠1)y=logax(a>0且a≠1)图象a>10<a<1a>10<a<1性质定义域定义域值域值域定点定点xy01xy011xyo1xyo在R上是增函数在R上是减函数在(0,+∞)上是增函数在(0,+∞)上是减函数(1,0)(0,1)单调性相同23指数函数与对数函数B(1)(2)(3)(4)OXy24指数函数与对数函数若图象C1,C2,C3,C4对应
y=logax,y=logbx,y=logcx,y=logdx,则()A.0<a<b<1<c<dB.0<b<a<1<d<cC.0<d<c<1<b<aD.0<c<d<1<a<bxyC1C2C3C4o1D25【1/16,1)
26指数函数与对数函数27指数函数与对数函数28指数函数与对数函数29指数函数与对数函数30指数函数与对数函数31指数函数与对数函数32Xy110y=x-1y=x-2a<0(1)图象都过(0,0)点和(1,1)点;(2)在第一象限内,函数值随x的增大而增大,即在(0,+∞)上是增函数。(1)图象都过(1,1)点;(2)在第一象限内,函数值随x的增大而减小,即在(0,+∞)上是减函数。
(3)在第一象限,图象向上与y轴无限接近,向右与x轴无限接近。Xy110y=x2y=x3y=x1/2a>033图象又如何?
试写出函数的定义域,并指出其奇偶性.
34函数与方程?函数在区间(a,b)上有零点,则f(a)f(b)<0?函数在区间(a,b)上有f(a)f(b)<0,则在区间(a,b)上有零点×35例:关于x的方程x2-(k+1)x+2k=0的两根异号,则实数k的取值范围是____________________解:令f(x)=x2-(k+1)x+2kxyo(-∞,0)由图可知:f(0)<036例:已知方程(m-1)x2+mx-1=0至少有一个正根,求实数m的范围.
解:若m-1=0,方程为x-1=0,x=1符合条件.若m-1≠0,设f(x)=(m-1)x2+mx-1.∵f(0)=-1≠0,∴方程f(x)=0无零根.
如方程有异号两实根,则x1x2=<0,m>1.如方程有两个正实根,则:
Δ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库作业隐患排查与整改计划
- 2024年度铝合金船舶制造材料采购协议3篇
- 2025年BIM工程师之BIM工程师考试题库带答案(能力提升)
- 2024年度消防电源设备供应安装合同2篇
- 2025版新教材高考物理全程一轮总复习课时分层作业30机械振动
- 4 认识空气 教学实录-2023-2024学年科学一年级下册冀人版
- 2024年乳胶漆环保认证采购合同范本3篇
- 2024年桶装水电子商务平台建设合同
- 2024版城市供水项目特许经营权合同3篇
- 2024版反担保合同:适用于跨境电商物流企业信用风险共担协议6篇
- 气相色谱检测器FID-培训讲解课件
- 新教材人教A版高中数学选择性必修第一册全册教学课件
- 《HSK标准教程1》-HSK1-L8课件
- 幼儿园小班绘本:《藏在哪里了》 课件
- 上册外研社六年级英语复习教案
- 替班换班登记表
- 社会保险法 课件
- 阿利的红斗篷 完整版课件PPT
- 桥梁工程挡土墙施工
- 供应商质量问题处理流程范文
- 实验室生物安全手册(完整版)资料
评论
0/150
提交评论