华南理工大学自动化科学与工程学院_第1页
华南理工大学自动化科学与工程学院_第2页
华南理工大学自动化科学与工程学院_第3页
华南理工大学自动化科学与工程学院_第4页
华南理工大学自动化科学与工程学院_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023/1/111Semi-supervisedSupportVectorMachine(SVM)AlgorithmsAndTheirApplicationsinBrainComputerInterfaces(BCIs)

李远清

华南理工大学自动化科学与工程学院脑机接口与脑信息处理研究中心OutlineMyresearchtopicsinrecentyearsSemi-supervisedSupportVectorMachine(SVM)

Aselftrainingsemi-supervisedSVMalgorithmanditsconvergenceFeatureextractionbasedonRayleighcoefficientmaximizationAnextendedsemi-supervisedSVMalgorithmanditseffectivenessApplicationsinBrainComputerInterfaces(BCIs)1.

MyresearchtopicsinrecentyearsMotivation:Toextractinterestingcomponentsfromcomplexdatausingsomeprinciples

Complexdata:highlydimensional,highlynoisy,ill-conditioned,highlydynamical,insufficient,etc.,E.g.EEG,fMRIdata.

Principles:independence,sparseness,ML,MAP,informationmaximization,entropy,etc.1.MyresearchtopicsinrecentyearsIndependentcomponentanalysis(ICA)andblindsourceseparation(BSS)inill-conditionedcases

whereareknownmixtures,areunknownmixingmatrixandunknownsources.Task:recoversourcesonlybasedontheknownmixtures.1.MyresearchtopicsinrecentyearsMainResults:Inill-conditionedcases,anecessaryandsufficientconditiononextractabilityofsourceswasobtained;

thenumberofsourceswhichcanbeextractedwasestimated;severalmodelsandalgorithmswereestablished.[1]YuanqingLi,JunWang,IEEETrans.OnSignalProcessing,vol.50(5),pp.997-1007,2002.[2]YuanqingLi,JunWang,J.M.Zurada,IEEETrans.OnNeuralNetworks,Vol.11(6),pp.1413-1422,2000.[3]YuanqingLi,WangJun,AndrzejCichocki,IEEETrans.onCircuitsandSystems,vol.51(9),pp.1814-1823,2004.[4]YuanqingLi,JunWang,NeuralNetworks,Vol18/10pp1348-1356,2005.[5]YuanqingLi,etal.,SignalProcessing,vol84(12),pp.2245-2263,2004.1.MyresearchtopicsinrecentyearsSparserepresentationanditsapplications

whereareknowndatavector,arebasismatrix(unknown/known)andcoefficientvectorrespectively.Task:findsuchthatsatisfiestheaboveconstraintandisassparseaspossible..1.MyresearchtopicsinrecentyearsMainresults:Twosparsesolutions,0-normsolutionand1-normsolution,wereanalyzedusingprobabilitymethods.Severalprobabilityestimatesontheirequivalencewereobtained---ProbabilityframeworkBlindsourceseparationinill-conditioned:separateallsources.[6]YuanqingLi,Shun-ichiAmari,AndrzejCichocki,CuntaiGuan,IEEETrans.OnInformationTheory,vol.52,no.7,July2006.[7]YuanqingLi,Shun-ichiAmari,AndrzejCichocki,etal.,UnderdeterminedBlindSourceSeparationBasedonSparseRepresentation,IEEETrans.onSignalProcessing,vol.54,no.2,pp.423-437,Feb.2006.[8]YuanqingLi,AndrzejCichockiandShun-ichiAmari,NeuralComputation,vol.16,no.6,pp.1193-1234,2004.[9]YuanqingLi,AndrzejCichocki,etc.NeuralInformationProcessingSystemConference(NIPS),2003,Canada[10]YuanqingLi,AndrzejCichocki,etal.,IEEETrans,onNeuralNetworks,vol.19(12),2008.121.Myresearchtopicsinrecentyears(3)EEG,fMRIdataanalysisEventrelatedSynchronizationandde-synchronizationofEEGcomponentsobtainedbysparserepresentationwereanalyzed;Pre-processingofEEGsignalsbasedonsparserepresentation;VoxelselectioninfMRIdataanalysis.

[11]YuanqingLi,AndrzejCichocki,andShun-ichiAmari,IEEETrans.onNeuralNetworks,Vol.17,No.2,pp.419-431,Mar.2006.[12]YuanqingLiandetal.,VoxelselectioninfMRIdataanalysis:Asparserepresentationmethod,IEEETrans.onBiomedicalEngineering(accepted).

1.Myresearchtopicsinrecentyears(4)Semi-supervisedlearninganditsapplicationsinBCIsE.g.twosemi-supervisedlearningalgorithmswhicharebasedonSVMandEMrespectivelyweredevelopedforjointfeatureextractionandclassificationforsmalltrainingdataset.ThesealgorithmscanbeusedtoreducethetrainingeffortandimprovetheadaptabilityinBCIs

[13]YuanqingLi,CuntaiGuan,NeuralComputation,NeuralComputation,18,pp.2730-2761,2006.[14]YuanqingLi,CuntaiGuan,MachineLearning,vol.71,no.1.[15]YuanqingLi,HuiqiLi,CuntaiGuan,PatternRecognitionLetters,vol.29(9),pp.1285-1294,2008.7.[16]A.Cichocki,…,YuanqingLi,NoninvasiveBCIs:MultiwaySignalProcessingandArrayDecomposition,IEEEComputerMagazine,Vol.41(10),pp.34-42,2008.2.1Semi-supervisedSVM:Introduction(1)AstandardSVMclassifier(forsufficienttrainingdata)Subjecttowhereisatrainingsample(featurevector),isthelabelofthissample.cisaregularizationconstant.Theobjectiveiscalledstructuralrisk.Foranewfeature,ifthenitslabelis1,otherwise,-1.2.1Semi-supervisedSVM:Introduction(2)Whysemi-supervisedlearningwithfeaturere-extractionisimportant?Inmanyrealapplications,labellingdataistimeconsumingandexpensive(e.g.,BCItraining,diseasediagnosis,etc).Whenonlyasmallamountoflabeleddataandalargeamountofunlabeleddataareavailable,semi-supervisedlearning,whichresortstolabeledandunlabeleddatasimultaneously,canoftenprovideusasatisfactoryclassifier.2.1Semi-supervisedSVM:IntroductionInrecentyears,semi-supervisedlearninghasreceivedagreatdealofattentionduetoitspotentialforreducingtheeffortoflabelingdataUntilnow,existingsemi-supervisedlearningmethodshavebeendevelopedonlyforclassification.However,manyfeaturesareextractedalsobasedontrainingdatawithlabels(e.g.,LDA).Howtoextractreliablefeatureswhentrainingdatasetissmall?Thisproblemhasnotbeendiscussed.

2.1Semi-supervisedSVM:Introduction2.Semi-supervisedSVM(3)ThemaincontributionsinthisworkProposeaself-trainingSVMalgorithmandproveitsconvergence;Howtoextractreliable(orconsistent)featuresandperformclassificationinsmalltrainingdatacase?Thisproblemisfirstdiscussed.Anextendedsemi-supervisedlearningalgorithmisproposedforjointfeatureextractionandclassification.Convergenceandeffectivenessofareanalyzed.ApplicationsinEEGbasedBCIs2.2Aself-trainingsemi-supervisedSVMFlowchartofAlgorithm1(forpreparedfeatures)Notations:FI,smallinitialtrainingdataset,Y0,labelset,FT,testdataset,Yk,labelsetpredictedinthekthiteration.[Y.Li,etal.,PatternRecognitionLetters,vol.29(9),2008.7.]FI+Y0FTY1FI+FTY0+Y1SVMFTY2FI+FTY0+Yk-1FTYkSVMSVMiteration1Iteration2iterationk2.2Aself-trainingsemi-supervisedSVM2.2Aself-trainingsemi-supervisedSVM2.2Aself-trainingsemi-supervisedSVM2.2Aself-trainingsemi-supervisedSVMAsimulationexample:Trainingdataset:10samples,Testdataset:190samples.Accuracyratesincrease,objectivefunctiondecreases2.3FeatureextractionbasedonRayleighcoefficientmaximization

ManycommonlyusedfeatureextractionalgorithmscanbededucedbymaximizingRayleighcoefficient,whereSIandSNaresymmetricmbymmatricesdesignedsuchthattheycanmaximizethedesiredinformationandminimizetheundesirednoisealongthedirectionof.Bysolvingtheaboveoptimizationproblem,weobtainamatrixQwhichjointlydiagonalizeSIandSN.AsubmatrixofQisusedasatransformationmatrixforfeatureextraction.2.3FeatureextractionbasedonRayleighcoefficientmaximization(1)CommonSpatialPatternfeatureextraction(commonlyusedinBCIsandEEGdataanalysis)::thesecondordercorrelationmatricesconstructedbythedataoftwoclassesrespectively.(2)LineardiscriminantanalysisNotethatweneedthelabelstoconstructSIandSN.2.4Anextendedsemi-supervisedSVMalgorithmFlowchartofAlgorithm2[Y.Li,etal.,NeuralComputation,18,2006;Y.Li,etal.,MachineLearning,vol.71,2007.]Iteration2DI+Y0FI(1),FT(1)Y1DI+DTY0+Y1F.E.Y2DI+DTY0+Yk-1YkF.E.F.E.iteration1iterationkAlg.1FI(2),FT(2)Alg.1FI(k),FT(k)Alg.1Notations:DI,smalltrainingdataset,Y0,labelset,DT,testdataset,Yklabelsetpredictedinkthiteration.FI(k),FT(k)aretrainingandtestfeaturesetsextractedinthekthiteration.2.4Anextendedsemi-supervisedSVMalgorithm2.4Anextendedsemi-supervisedSVMalgorithm2.4Anextendedsemi-supervisedSVMalgorithm

Convergence:

WehaveprovedthatthesumofRayleighcoefficientsgenerallyincreasesintheiterationsofAlgorithm2andisbounded.Thatis,Algorithm2isconvergent.Thiswillbedemonstratedinourexperimentaldataanalysis.3.ApplicationsinBCIsIntroductiontoBCIsWhat?

AninterfacebetweenbrainandcomputerWhy?

Brain-ComputerInterface(BCI)providesanalternativecommunicationsandcontrolmethodforthosepeoplewithseveremotordisabilitiesNeuralrehabilitation3.ApplicationsinBCIsHowmany?

TherearetwoclassesofBCIs.InvasiveBCIsuseneurons’signalasinput,whichiscollectedbyimplantingmicro-electrodesinthebrain[2],whilenoninvasiveBCIsuseEEG,MEG,FMRIetc.asinputs(collectedfromtheoutsideofbrain)[1]

[1]Birbaumer,N.,Ghanayim,N.,etc.Aspellingdevicefortheparalysed,Nature,398,297-298,1999.[2]LeighR.Hochberg,etc.,Neuronalensemblecontrolofprostheticdevicesbyahumanwithtetraplegia,Nature,Vol.442,2006|

3.ApplicationsinBCIsHow?

脑机接口的意义:(1)

辅助脑科学的研究(验证手段);(2)残疾人神经功能辅助与康复,……。脑机接口信号流图3.ApplicationsinBCIs脑机接口:不经过外围神经和肌肉等正常路径、由大脑向外输出指令的脑-机通信系统。约10年历史,属于当今国际科学研究的前沿领域,在高端杂志(如Nature、Science、PNAS)有不少论文发表,受到很多国家的重视。应用前景:残疾人神经功能辅助与康复,如文字输入、鼠标、遥控器、假肢、康复机器人等;辅助脑科学的研究(验证手段);其它用途(游戏、宇航,危险环境等)……。3.ApplicationsinBCIsChallenges:Highcomplexityofbrainsignals(e.g.nonstationarity,

highmixtures,highdimension);DatacollectionforinvasiveBCIs;HighnoiseespeciallyfornoninvasiveBCIs;Trainingistimeconsumingandboring;Highdimensionalcontrol(difficulttoobtainseveralindependentcontrolsignals);Thenumberofusefulfeaturesissmall.E.g.firingrateisthemostcommonininvasiveBCIs.Nowweareconsideringspikepatterns.FeaturesusedinnoninvasiveBCIincludeCSP,P300,SLP,SVEP,power.(lessthan10).Etc.3.ApplicationsinBCIsDemos:Demo1(Trackhandmovementofamonkeyusingneurons’signal[JohnP.Donoghueetc.])Demo2(EEGbasedBCIspellerusingP300)Demo3(BCIsoccergameusingmotorimaginaries)Demo4

(2Dcursorcontrol)Demo5

(Rehabilitation)3.ApplicationsinBCIsExample1:P300basedspeller.3.ApplicationsinBCIsExample2:DatasetIVa,BCIcompetition2005(wonthesecond).Task:discriminatetwoclassesofmotorimaginaries(righthand,rightfoot)withsmalltrainingdataset.Trialnumbers:Initialtrainingdataset,40,testdataset,120,independentdataset,80.WeapplyAlgorithm2(withfeaturere-extraction)tothisdataset.3.ApplicationsinBCIsFeaturesinIteration1FeaturesinIteration6ConclusionsWeproposedtwosemi-supervisedSVMalgorithmsandprovedtheirconvergence.Algorithm1isaself-trainingalgorithm.Byembeddingfeaturere-extracti

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论