下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4 B.2 C. D.2.如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A.逐渐变大 B.逐渐变小 C.等于定值16 D.等于定值243.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边落在对角线BD上,点A落在点A'处,折痕为DG,求AG的长为()A.1.5 B.2 C.2.5 D.34.关于x的一元二次方程x2+mx+m2﹣7=0的一个根是﹣2,则m的值可以是()A.﹣1 B.3 C.﹣1或3 D.﹣3或15.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③6.以原点为中心,把点逆时针旋转,得点,则点坐标是()A. B. C. D.7.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>- B.k>-且 C.k<- D.k-且8.如图,是正方形的外接圆,点是上的一点,则的度数是()A. B.C. D.9.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)10.关于x的二次函数y=x2﹣mx+5,当x≥1时,y随x的增大而增大,则实数m的取值范围是()A.m<2 B.m=2 C.m≤2 D.m≥211.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为()A.150元 B.160元 C.170元 D.180元12.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A.100° B.110° C.120° D.130°二、填空题(每题4分,共24分)13.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为_____.14.圆锥侧面展开图的圆心角的度数为,母线长为5,该圆锥的底面半径为________.15.已知关于x的方程x2-3x+m=0的一个根是1,则m=__________.16.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为____________.17.如图,矩形的面积为,它的对角线与双曲线相交于点,且,则________.18.方程x(x﹣5)=0的根是_____.三、解答题(共78分)19.(8分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=50米,若灰太狼以5米/秒的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(结果保留根号)20.(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?21.(8分)如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(-3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形.若存在,求出点P的坐标;若不存在,请说明理由.22.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F.(1)求证:;(2)过点C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的长.23.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价(元/件)…30405060…每天销售量(件)…500400300200…(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?24.(10分)如图1,在△ABC中,AB=BC=20,cosA=,点D为AC边上的动点(点D不与点A,C重合),以D为顶点作∠BDF=∠A,射线DE交BC边于点E,过点B作BF⊥BD交射线DE于点F,连接CF.(1)求证:△ABD∽△CDE;(2)当DE∥AB时(如图2),求AD的长;(3)点D在AC边上运动的过程中,若DF=CF,则CD=.25.(12分)如图,要利用一面足够长的墙为一边,其余三边用总长的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽米的门,能够建生态园的场地垂直于墙的一边长不超过米(围栏宽忽略不计).每个生态园的面积为平方米,求每个生态园的边长;每个生态园的面积_(填“能”或“不能”)达到平方米.(直接填答案)26.如图,双曲线(>0)与直线交于点A(2,4)和B(a,2),连接OA和OB.(1)求双曲线和直线关系式;(2)观察图像直接写出:当>时,的取值范围;(3)求△AOB的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故选C.【点睛】本题考查平行线分线段成比例定理.解题的关键是注意掌握各比例线段的对应关系.2、C【分析】根据反比例函数k的几何意义得出S△POC=×2=1,S矩形ACOD=6,即可得出,从而得出,通过证得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【详解】如图,由题意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC•PC,S矩形ACOD=OC•AC,∴,∴,∴,∵AB∥轴,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键.3、A【分析】由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设AG=x,由勾股定理即可得:,解此方程即可求得答案.【详解】解:∵四边形ABCD是矩形,∴∴由折叠的性质,可得:A′D=AD=3,A′G=AG,∴A′B=BD−A′D=5−3=2,设AG=x,则A′G=x,BG=AB−AG=4−x,在Rt△A′BG中,由勾股定理得:∴解得:∴故选:A.【点睛】考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.4、C【分析】先把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,然后解关于m的方程即可.【详解】解:把x=﹣2代入方程x2+mx+m2﹣7=0得4﹣2m+m2﹣7=0,解得m=﹣1或1.故选:C.【点睛】本题主要考察一元一次方程的解及根与系数的关系,解题关键是熟练掌握计算法则.5、B【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.故选:B.【点睛】本题考查了利用频率估计概率,明确概率的定义是解题的关键.6、B【分析】画出图形,利用图象法即可解决问题.【详解】观察图象可知B(-5,4),故选B.【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,灵活运用所学知识解决问题7、B【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.8、C【分析】首先连接OB,OA,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得的度数.【详解】解:连接OB,OA,∵⊙O是正方形ABCD的外接圆,∴∠BOA=90°,∴=∠BOA=45°.故选:C.【点睛】此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.9、D【解析】分析:直接利用反比例函数图象上点的坐标特点进而得出答案.详解:∵反比例函数y=的图象经过点(3,-2),∴xy=k=-6,A、(-3,-2),此时xy=-3×(-2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(-2,-3),此时xy=-3×(-2)=6,不合题意;D、(-2,3),此时xy=-2×3=-6,符合题意;故选D.点睛:此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.10、C【分析】先求出二次函数的对称轴,再根据二次函数的性质解答即可.【详解】解:二次函数y=x2﹣mx+5的开口向上,对称轴是x=,∵当x≥1时,y随x的增大而增大,∴≤1,解得,m≤2,故选:C.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.11、A【分析】设获得的利润为y元,由题意得关于x的二次函数,配方,写成顶点式,利用二次函数的性质可得答案.【详解】解:设获得的利润为y元,由题意得:∵a=﹣1<0∴当x=150时,y取得最大值2500元.故选A.【点睛】本题考查了二次函数在实际问题中的应用,正确地写出函数关系式,并明确二次函数的性质,是解题的关键.12、B【分析】利用圆内接四边形对角互补的性质求解.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故选B.【点睛】本题考查圆内接四边形的性质,掌握圆内接四边形对角互补是解题关键.二、填空题(每题4分,共24分)13、-1【解析】试题分析:对于一元二次方程的两个根和,根据韦达定理可得:+=,即,解得:,即方程的另一个根为-1.14、1【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解关于r的方程即可.【详解】设该圆锥的底面半径为r,根据题意得,解得.故答案为1.【点睛】本题考查圆锥的计算,解题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15、1【解析】试题分析:∵关于x的方程的一个根是1,∴1﹣3×1+m=0,解得,m=1,故答案为1.考点:一元二次方程的解.16、1【分析】过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知△CDF≌△EDG,从而有CF=EG,由△ADE的面积可求EG,得出CF的长,由矩形的性质得BF=AD,根据BC=BF+CF求解.【详解】解:过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知CD=ED,∵∠EDG+∠CDG=∠CDG+∠FDC=90°,∴∠EDG=∠FDC,又∠DFC=∠G=90°,∴△CDF≌△EDG,∴CF=EG,∵S△ADE=AD×EG=3,AD=2,∴EG=3,则CF=EG=3,依题意得四边形ABFD为矩形,∴BF=AD=2,∴BC=BF+CF=2+3=1.故答案为1.17、12【解析】试题分析:由题意,设点D的坐标为(x,y),则点B的坐标为(,),所以矩形OABC的面积,解得∵图象在第一象限,∴.考点:反比例系数k的几何意义点评:反比例系数k的几何意义是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.18、x1=0,x2=1【分析】根据x(x-1)=0,推出x=0,x-1=0,求出方程的解即可.【详解】解:x(x﹣1)=0,∴x=0,x﹣1=0,解得:x1=0,x2=1,故答案为x1=0,x2=1.【点睛】本题考查了解一元一次方程和解一元二次方程,关键是能把解一元二次方程转化成解一元一次方程.三、解答题(共78分)19、灰太狼秒钟后能抓到懒羊羊【分析】根据已知得出AC=BC,进而利用解直角三角形得出BD的长进一步可得到结果.【详解】解;在Rt△BCD中∵∠BCD=90-30=60,∠CBD=30∴AC=BC=50m,在Rt△BCD中∴sin60=∴BD=BCsin60=m,设追赶时间为ts,由题意得:5t=∴t=s答:灰太狼秒钟后能抓到懒羊羊.【点睛】此题考查解直角三角形的应用.注意能借助俯角构造直角三角形并解直角三角形是解题的关键,注意数形结合思想的应用.20、(1)36元;(2)20元;2880元【解析】(1)每件衬衫降价x元,利用每件利润销售件数=总利润,列方程.(2)利用每件利润销售件数=总利润列关系式,得到二次函数,求最值即可.【详解】(1)解:设每件衬衫降价x元,可使每天盈利1600元,根据题意可列方程:(44-x)(20+5x)=1600,整理,得x²-40x+144=0,解得:x=36或x=4.因为尽快减少库存,取x=36.答:每件衬衫降价36元更利于销售;(2)解:设每件衬衫降价a元,可使每天盈利y元,y=(44-a)(20+5a)=-5a²+200a+880=-5(a-20)²+2880,因为-5<0,所以当a=20时,y有最大值2880.所以,当每件衬衫降价20元时盈利最大,最大盈利是2880元.21、(1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2);(3)存在,满足条件的P点坐标为(﹣3,0)、(﹣,0).【解析】(1)先把代入得到的值,从而确定反比例函数的解析式为;再利用反比例函数解析式确定B点坐标为,然后运用待定系数法确定所求的一次函数的解析式为即可求得.
(3)过A点作轴于,交x轴于,则点的坐标为;再证明利用相似比计算出则,所以点的坐标为,于是得到满足条件的P点坐标.【详解】将代入,得∴反比例函数的解析式为;将代入,得解得将和分别代入得,解得,∴所求的一次函数的解析式为(2)当时,解得:(3)存在.过A点作轴于,交x轴于,如图,点坐标为点的坐标为而即点的坐标为∴满足条件的点坐标为22、(1)见解析;(2)CF=,FG=,【分析】(1)连接AE,利用等腰三角形的三线合一的性质证明∠EAB=∠EAC即可解决问题.(2)证明△BCG∽△ABE,可得,由此求出CG,再利用平行线分线段成比例定理求出CF,利用勾股定理即可求出FG.【详解】(1)证明:连接AE.∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∴.(2)解:∵BF⊥AB,CG⊥BF,AE⊥BC∴∠CGB=∠AEB=∠ABF=90°,∵∠CBG+∠ABC=90°,∠ABC+∠BAE=90°,∴∠CBG=∠BAE,∴△BCG∽△ABE,∴,∴,∴CG=2,∵CG∥AB,∴,∴,∴CF=,∴FG===.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、等腰三角形的性质、相似三角形的判定与性质.23、(1)y=﹣10x+800;(2)单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元【分析】(1)直接利用待定系数法求解可得;(2)根据“总利润单件利润销售量”可得关于的一元二次方程,解之即可得.【详解】解:(1)设y=kx+b,根据题意可得,解得:,每天销售量与单价的函数关系为:y=﹣10x+800,(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过45元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元.【点睛】本题主要考查了一次函数及一元二次方程的应用,解题的关键是熟练掌握待定系数法求函数解析式及找到题目蕴含的相等关系.24、(1)证明见解析;(2);(3)1.【分析】(1)根据两角对应相等的两个三角形相似证明即可.
(2)解直角三角形求出BC,由△ABD∽△ACB,推出,可得AD=.
(3)点D在AC边上运动的过程中,存在某个位置,使得DF=CF.作FH⊥AC于H,BM⊥AC于M,BN⊥FH于N.则∠NHM=∠BMH=∠BNH=90°,由△BFN∽△BDM,可得=tan∠BDF=tanA=,推出AN=AM=×12=9,推出CH=CMMH=CMAN=169=7,再利用等腰三角形的性质,求出CD即可解决问题.【详解】(1)证明:如图1中,∵BA=BC,∴∠A=∠ACB,∵∠BDE+∠CDE=∠A+∠ABD,∠BDE=∠A,∴∠BAD=∠CDE,∴△ABD∽△CDE.(2)解:如图2中,作BM⊥AC于M.在Rt△ABM中,则AM=AB•cosA=20×=16,由勾股定理,得到AB2=AM2+BM2,∴202=162+BM2,∴BM=12,∵AB=BC,BM⊥AC,∴AC=2AM=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△ACB,∴∴AD==.(3)点D在AC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥AC于H,AM⊥AC于M,BN⊥FH于N.则∠NHM=∠BMH=∠BNH=90°,∴四边形BMHN为矩形,∴∠MBN=90°,MH=BN,∵AB=BC,BM⊥AC,∵AB=20,AM=CM=16,AC=32,BM=12,∵BN⊥FH,BM⊥AC,∴∠BNF=90°=∠BMD,∵∠DBF=90°=∠MBN,∴∠NBF=∠MBD,∴△BFN∽△BDM,∴=tan∠BDF=tanA=,∴BN=BM=×12=9,∴CH=CM﹣MH=CM﹣BN=16﹣9=7,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=1.故答案为:1.【点睛】本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.25、(1)每个生态园的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 室内乳胶漆施工合同模板
- 物流货物仓储合同范例
- 林场林地租赁合同(2024版):2024年度租赁协议
- 渣土运输公司合同范例
- 农机作业服务合同协议书范本
- 秦皇岛集体合同模板
- 河北承包荒地合同范例
- 居间服务合同范本2篇
- 2024年度购销合同:汽车销售合同范本3篇
- 维修店铺转让合同范例
- 视网膜中央动脉阻塞课件整理
- 二十世纪西方文学课件
- 常见的护理诊断与护理措施
- 《影视美术设计》教学课件(全)
- 三级插花花艺师资格考试题库(重点培训400题)
- 30种植物简介课件
- 2022年物流公司组织架构图及部门职责
- 小学语文新课程标准最新版2022
- 小型割草机的设计
- 诉讼材料接收表
- 部编版四年级上册语文第二十六课《西门豹治邺》课文原文及练习题
评论
0/150
提交评论