2022年湖北省咸宁咸安区六校联考九年级数学第一学期期末质量跟踪监视试题含解析_第1页
2022年湖北省咸宁咸安区六校联考九年级数学第一学期期末质量跟踪监视试题含解析_第2页
2022年湖北省咸宁咸安区六校联考九年级数学第一学期期末质量跟踪监视试题含解析_第3页
2022年湖北省咸宁咸安区六校联考九年级数学第一学期期末质量跟踪监视试题含解析_第4页
2022年湖北省咸宁咸安区六校联考九年级数学第一学期期末质量跟踪监视试题含解析_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()A. B. C. D.2.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.

B.

C.

D.13.下列是一元二次方程的是()A. B. C. D.4.⊙O的半径为15cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=18cm,则AB和CD之间的距离是()A.21cm B.3cmC.17cm或7cm D.21cm或3cm5.在单词probability(概率)中任意选择一个字母,选中字母“i”的概率是()A. B. C. D.6.关于的方程的根的情况,正确的是().A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根7.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:18.在同一坐标系中,一次函数与二次函数的大致图像可能是A. B. C. D.9.已知二次函数(是实数),当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是()A. B.C. D.10.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.12.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.13.已知抛物线,那么点P(-3,4)关于该抛物线的对称轴对称的点的坐标是______.14.把抛物线沿着轴向左平移3个单位得到的抛物线关系式是_________.15.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.16.有一列数,,,,,,则第个数是_______.17.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)的图象与AB相交于点D.与BC相交于点E,且BD=3,AD=6,△ODE的面积为15,若动点P在x轴上,则PD+PE的最小值是_____.18.设m,n分别为一元二次方程x2+2x-2021=0的两个实数根,则m2+3m+n=______.三、解答题(共66分)19.(10分)如图,抛物线(a≠0)经过A(-1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.20.(6分)如图,抛物线的图象过点.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得?若存在,请求出点M的坐标;若不存在,请说明理由.21.(6分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.22.(8分)如图1,在平面直角坐标系中,二次函数的图象与轴交于两点,点为抛物线的顶点,为线段中点.(1)求的值;(2)求证:;(3)以抛物线的顶点为圆心,为半径作,点是圆上一动点,点为的中点(如图2);①当面积最大时,求的长度;②若点为的中点,求点运动的路径长.

23.(8分)东坡商贸公司购进某种水果成本为20元/,经过市场调研发现,这种水果在未来48天的销售单价(元/)与时间(天)之间的函数关系式,为整数,且其日销售量()与时间(天)的关系如下表:时间(天)1361020…日销售量()11811410810080…(1)已知与之间的变化符合一次函数关系,试求在第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?24.(8分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).(1)求反比例函数和一次函数的解析式;(2)求ΔAOC的面积;(3)直接写出时的x的取值范围(只写答案)25.(10分)如图,∠AED=∠C,DE=4,BC=12,CD=15,AD=3,求AE、BE的长.26.(10分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.(1)求点D的坐标:(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.【详解】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,

由勾股定理,得AB==5cosA==故选:B.【点睛】本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.【点睛】本题考查概率公式.3、A【分析】用一元二次方程的定义,1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项系数不为零,5看是整式即可.【详解】A、由定义知A是一元二次方程,B、不是等式则B不是一元二次方程,C、二次项系数a可能为0,则C不是一元二次方程,D、含两个未知数,则D不是一元二次方程.【点睛】本题考查判断一元二次方程问题,关键是掌握定义,注意特点1看等式,2看含一个未知数,3看未知数次数是2次,4看二次项数系数不为零,5看是整式.4、D【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12cm,CF=CD=9cm,接着根据勾股定理,在Rt△OAE中计算出OE=9cm,在Rt△OCF中计算出OF=12cm,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF-OE.【详解】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,

∵AB∥CD,

∴OF⊥CD,

∴AE=BE=AB=12cm,CF=DF=CD=9cm,

在Rt△OAE中,∵OA=15cm,AE=12cm,

∴OE=,

在Rt△OCF中,∵OC=15cm,CF=9cm,

∴OF=,

当圆心O在AB与CD之间时,EF=OF+OE=12+9=21cm(如图1);

当圆心O不在AB与CD之间时,EF=OF-OE=12-9=3cm(如图2);

即AB和CD之间的距离为21cm或3cm.

故选:D.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.5、A【解析】字母“i”出现的次数占字母总个数的比即为选中字母“i”的概率.【详解】解:共有11个字母,每个字母出现的可能性是相同的,字母i出现两次,其概率为.故选:A.【点睛】本题考查简单事件的概率,利用概率公式求解是解答此题的关键.6、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵,∴,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.7、C【分析】菱形的性质;含30度角的直角三角形的性质.【详解】如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.8、D【分析】对于每个选项,先根据二次函数的图象确定a和b的符号,然后根据一次函数的性质看一次函数图象的位置是否正确,若正确,说明它们可在同一坐标系内存在.【详解】A、由二次函数y=ax2+bx的图象得a>0,b>0,则一次函数y=ax+b经过第一、二、三象限,所以A选项错误;B、由二次函数y=ax2+bx的图象得a>0,b<0,则一次函数y=ax+b经过第一、三、四象限,所以B选项错误;C、由二次函数y=ax2+bx的图象得a<0,b<0,则一次函数y=ax+b经过第一、二、四象限,所以C选项错误;D、由二次函数y=ax2+bx的图象得a<0,b>0,则一次函数y=ax+b经过第二、三、四象限,所以D选项正确.故选:A.【点睛】本题考查了二次函数的图象:二次函数的图象为抛物线,可能利用列表、描点、连线画二次函数的图象.也考查了二次函数图象与系数的关系.9、D【解析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】抛物线的对称轴为直线x=-=3,∵y1>y2,∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,∴|x1-3|>|x2-3|.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10、C【分析】由AC是⊙的切线可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【详解】解:∵AC是⊙的切线∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.二、填空题(每小题3分,共24分)11、1【分析】将x轴下方的阴影部分沿对称轴分成两部分补到x轴上方,即可将不规则图形转换为规则的长方形,则可求出.【详解】∵抛物线与轴交于点、,∴当时,则,解得或,则,的坐标分别为(-3,0),(1,0),∴的长度为4,从,两个部分顶点分别向下作垂线交轴于、两点.根据中心对称的性质,轴下方部分可以沿对称轴平均分成两部分补到与,如图所示,阴影部分转化为矩形,根据对称性,可得,则,利用配方法可得,则顶点坐标为(-1,4),即阴影部分的高为4,.故答案为:1.【点睛】本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.12、【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵theorem中的7个字母中有2个字母e,∴任取一张,那么取到字母e的概率为.13、(1,4).【解析】试题解析:抛物线的对称轴为:点关于该抛物线的对称轴对称的点的坐标是故答案为14、【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式,写出抛物线解析式,即可.【详解】由题意知:抛物线的顶点坐标是(0,1).∵抛物线向左平移3个单位∴顶点坐标变为(-3,1).∴得到的抛物线关系式是.故答案为.【点睛】本题主要考查了二次函数图像与几何变换,正确掌握二次函数图像与几何变换是解题的关键.15、1米【分析】设建筑物的高度为x,根据物高与影长的比相等,列方程求解.【详解】解:设建筑物的高度为x米,由题意得,

,解得x=1.故答案为:1米.【点睛】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.16、【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.17、.【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,求得B和E的坐标,然后E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小,利用勾股定理即可求得E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小.【详解】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,∵BD=3,AD=6,∴AB=9,设B点的坐标为(9,b),∴D(6,b),∵D、E在反比例函数的图象上,∴6b=k,∴E(9,b),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=9b﹣k﹣k﹣•3•(b﹣b)=15,∴9b﹣6b﹣b=15,解得:b=6,∴D(6,6),E(9,4),作E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小,∵AB=9,BE′=6+4=10,∴DE′==,故答案为.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式,本题属于中等题型.18、1.【分析】根据一元二次方程的解结合根与系数的关系即可得出m2+2m=2021、m+n=-2,将其代入m2+3m+n中即可求出结论.【详解】∵m,n分别为一元二次方程x2+2x-2018=0的两个实数根,∴m2+2m=2021,m+n=-2,∴m2+3m+n=m2+2m+(m+n)=1+(-2)=1.故答案为1.【点睛】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系即可得出m2+2m=1、m+n=-2是解题的关键.三、解答题(共66分)19、(1),D(,);(2)P(,);(3)存在.N(,)或(,)或(,)或(,).【解析】试题分析:(1)利用待定系数法求出抛物线解析式;(2)确定出当△ACP的周长最小时,点P就是BC和对称轴的交点,利用两点间的距离公式计算即可;(3)作出辅助线,利用tan∠MDN=2或,建立关于点N的横坐标的方程,求出即可.试题解析:(1)由于抛物线(a≠0)经过A(-1,0),B(2,0)两点,因此把A、B两点的坐标代入(a≠0),可得:;解方程组可得:,故抛物线的解析式为:,∵=,所以D的坐标为(,).(2)如图1,设P(,k),∵,∴C(0,-1),∵A(-1,0),B(2,0),∴A、B两点关于对称轴对称,连接CB交对称轴于点P,则△ACP的周长最小.设直线BC为y=kx+b,则:,解得:,∴直线BC为:.当x=时,=,∴P(,);(3)存在.如图2,过点作NF⊥DM,∵B(2,0),C(0,﹣1),∴OB=2,OC=1,∴tan∠OBC=,tan∠OCB==2,设点N(m,),∴FN=|m﹣|,FD=||=||,∵Rt△DNM与Rt△BOC相似,∴∠MDN=∠OBC,或∠MDN=∠OCB;①当∠MDN=∠OBC时,∴tan∠MDN==,∴,∴m=(舍)或m=或m=,∴N(,)或(,);②当∠MDN=∠OCB时,∴tan∠MDN==2,∴,∴m=(舍)或m=或m=,∴N(,)或(,);∴符合条件的点N的坐标(,)或(,)或(,)或(,).考点:二次函数综合题;相似三角形的判定与性质;分类讨论;压轴题.20、(1);(2)存在,点,周长为:;(3)存在,点M坐标为【分析】(1)由于条件给出抛物线与x轴的交点,故可设交点式,把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线对称,故有,则,所以当C、P、B在同一直线上时,最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把代入即求得点P纵坐标.(3)由可得,当两三角形以PA为底时,高相等,即点C和点M到直线PA距离相等.又因为M在x轴上方,故有.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.【详解】解:(1)∵抛物线与x轴交于点∴可设交点式把点代入得:∴抛物线解析式为(2)在抛物线的对称轴上存在一点P,使得的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线上,点A、B关于对称轴对称∵当C、P、B在同一直线上时,最小最小设直线BC解析式为把点B代入得:,解得:∴直线BC:∴点使的周长最小,最小值为.(3)存在满足条件的点M,使得.∵∴当以PA为底时,两三角形等高∴点C和点M到直线PA距离相等∵M在x轴上方,设直线AP解析式为解得:∴直线∴直线CM解析式为:解得:(即点C),∴点M坐标为【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.21、12米【详解】解:设BC边的长为x米,根据题意得解得:∵20>16,∴不合题意,舍去答:该矩形草坪BC边的长为12米.22、(1),;(2)证明见解析;(3)①或;②.【分析】(1)将代入二次函数的解析式即可求解;(2)证得是等边三角形即可证得结论;(3)①根据题意,当或时,或面积最大,利用三角形中位线定理可求得的长,利用勾股定理可求得,即可求得答案;②根据点M的运动轨迹是半径为2的,则的中点的运动轨迹也是圆,同样,的中点的运动轨迹也是圆,据此即可求得答案.【详解】∵二次函数的图象与轴交于两点,∴,解得:,故答案为:,;(2)由(1)得:抛物线的解析式为,∵二次函数的图象与轴交于两点,∴抛物线的对称轴为:,∴顶点的坐标为:,,∵,,∴,∴是等边三角形,∵为线段中点,∴;(3)①∵为定值,当时,面积最大,如图,由(2)得,,,∴∥,∵点为线段中点,点为的中点,∴∥,,∴三点共线,在Rt中,,,∴,∴;同理,当时,面积最大,同理可求得:;故答案为:或;②如图,∵点E的运动轨迹是,半径为,∴的中点的运动轨迹也是圆,半径为1,∴的中点M的运动轨迹也是圆,半径为,∴点M运动的路径长为:.故答案为:.【点睛】主要考查了二次函数的综合,二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23、(1)第30天的日销售量为;(2)当时,【分析】(1)设y=kt+b,利用待定系数法即可解决问题.(2)日利润=日销售量×每kg利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.【详解】(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,,∴y=-2t+1.将t=30代入上式,得:y=-2×30+1=2.所以在第30天的日销售量是2kg.(2)设第天的销售利润为元,则当时,由题意得,==∴t=20时,w最大值为120元.当时,∵对称轴t=44,a=2>0,∴在对称轴左侧w随t增大而减小,∴t=25时,w最大值为210元,综上所述第20天利润最大,最大利润为120元.【点睛】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.24、(1),;(2)C(-3,0),S=6;(3)或【分析】(1)根据题意把A的坐标代入反比例函数的图像与一次函数,分别求出k和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论