




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
各类边缘检测算子的比较摘要:边缘检测是图像处理和计算机视觉中的基本问题,其目的标识数字图像中亮度变化明显的点。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于搜索和基于零交叉。基于搜索的边缘检测算子有:Roberts算子,Prewitt算子,Sobel算子,Canny算子,罗盘算子。基于零交叉的边缘检测算子有Marr-Hildreth边缘检测器。本篇论文分析了各种检测算子的特点,并对各种边缘检测算法的检测结果进行了比较。关键词:边缘检测;图像处理;算子0引言图像边缘是图像的重要特征,是计算机视觉、模式识别等的基础,因此边缘检测是图像处理中一个重要的环节。然而,图像边缘受很多因素的影响。这些包括(i)深度上不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。目前,常用的边缘检测算法没有哪一种具有绝对的优越性。因此,对各种边缘检测算子的性能进行比较分析,根据图像边缘的特征选择比较合理的边缘检测显得尤为重要。1基于搜索的边缘检测算子基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示,例如梯度模;然后,用计算估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。
Roberts算子Roberts算子【1】是一种利用局部差分算子寻找边缘的算子,它由下式给出:g(x,y)=[f(x,y)-f(x+1,y+1)]2+[f(x+1,y)-f(x,y+1)]2(1)其中f(x,y)、f(x+1,y)、f(x,y+1)和£(x+1,y+1)分别为4领域的坐标,且是具有整数像素坐标的输入图像。Roberts算子是2X2算子模板。图1所示的2个卷积核形成了Roberts算子。图像中的每一个点都用这2个核做卷积。100-1100-1图101-10Roberts算子Prewitt算子Prewitt算子由下式给出:Sp=(dx2+dy2)1/2(2)、dy形成了2个核进行Prewitt算子是3M算子模板。图3所示的、dy形成了2个核进行Prewitt算子。与Sobel算子的方法一样,图象中的每个点都用这卷积,取最大值作为输出值。Prewitt[2]-101-1-101-101-101111000-1-1-1算子也产生1幅边缘幅度图象。Prewitt算子Sobel算子Sobel【3】算子是一种一阶微分算子,它利用像素邻近区域的梯度值来计算1个像素的梯度,然后根据一定的阈值来取舍。它由下式给出:S=(dx2+dy2)1/2(3)Sobel算子是3M算子模板。图2所示的2个卷积核dx、dy形成Sobel算子2个卷积2个卷积的最大值作为该点的输出值。运算结果是1幅边缘幅度图象。-101121-202000-101-1-2-1图3Sobel算子Canny算子Canny【4】边缘检测算子是近年来在数字图像处理中广泛应用的边缘算子,它是应用变分原理推导出的一种用高斯模块导数逼近的最优算子。通过Canny算子的应用,可以计算出数字图像的边缘强度和边缘梯度方向,为后续边缘点判断提供依据。公式:Gn=n?G(4)n就是边缘方向,?G是梯度矢量,而边缘强度由|?G*f(x,y)|决定。在Canny算子计算实现过程中,为了提高速度,同样可以采用分解的方法,把?G的滤波模块分解为二个一维的行列滤波器。即r)exp(-^-72b将(4)(5)分别与图像f(i,j)卷积,得到:c否*“tc仪7*"iTOC\o"1-5"\h\z(7)E产工7*/。/)00dj虫J)二心“"八十©3))伍八=瓯阴、(8)^式中A(i,j)反映了图像上(i,j)点处的边缘强度,a(i,j柱图像(i,j)点处的法向方向(正交于边缘方向)。当一个像素满足以下3个条件时,则认为是图像的边缘点:(1)该点的边缘强度大于沿该点梯度方向的两个相邻像素点的边缘强度;(2)与该点梯度方向上相邻两点的方向差小于045;(3)以该点为中心的3x3领域中的边缘强度极大值小于某个阈值;条件(1)(2)的作用是将在梯度方向上的两个相邻像素从候选边缘点中剔除,条件(3)的作用是消除虚假的边缘点。2基于零交叉的边缘检测算子基于零交叉的方法找到由图像得到的二阶导数的零交叉点来定位边缘.2.1Marr-Hildreth边缘检测算子Marr-Hildreth边缘检测算子是将高斯算子和拉普拉斯算子结合在一起而形成的一种新的边缘检测算子,先用高斯算子对图像进行平滑,然后采用拉普拉
斯算子根据二阶微分过零点来检测图像边缘,因此该算子也可称为LOG(LaplacianofGaussian斯算子根据二阶微分过零点来检测图像边缘,因此该算子也可称为LOG(LaplacianofGaussian(9)=—!—+;1——l)exp(一-!—+y1»2(7加一式中,G(x,y,$力高斯函数,x,y为图像的横坐标和纵坐标。在数字图像中实现图像与模块卷积运算时,运算速度与选取的模块大小有直接关系,模块越大,检测效果越明显,速度越慢,反之则效果差一点,但速度提高很多。因此在不同的条件下应选取不同大小的模块。在实际计算过程中,还可以通过分解的方法提高运算速度,即把二维滤波器分解为独立的行、列滤波器[2]0常用5x5模块的Marr-Hildreth算子为-2-4-4-4-2-4080-4-48248-4-4080-4-2-4-4-4-2图4Marr-Hildreth算子2几种算子的比较在数字图像处理中,衡量边缘检测好坏的标准有:运算速度、边缘定位能力以及噪声抑制能力。首先,运算速度方面,对于一个N*N的图像,其运算量如下:算子加法运算PN乘法运算MnRoberts算子3*N20Prewitt算子11*N20Sobel算子11*N22*N2Canny算子运算量大,具体看所取卷积模块的大小Marr-Hildren算子运算量大,具体看所取卷积模块的大小表1各种算子运算量对比由表1知,Canny算子和Marr-Hildren算子的运算量都比较大。对于边缘定位能力和噪声抑制能力是相互矛盾的,不可兼得。下面是各种算子的此类特点:Roberts算子:Roberts算子利用局部差分算子寻找边缘,边缘定位精度较高,但容易丢失一部分边缘,同时由于没经过图像平滑计算,因此不能抑制噪声。该算子对具有陡峭的低噪声图像响应最好。Sobel算子和Prewitt算子:都是对图像进行差分和滤波运算,差别只是平滑部分的权值有些差异,因此对噪声具有一定的抑制能力,但不能完全排除检测结果中出现伪边缘。同时这2个算子边缘定位比较准确和完整,但容易出现边缘多像素宽。该类算子对灰度渐变和具有噪声的图像处理的较好。Canny算子:该算子同样采用高斯函数对图像作平滑处理,因此具有较强的去噪能力,但同样存在容易平滑掉一些边缘信息。同时其后所采用的一阶微分算子的方向性较M-H算子要好,因此边缘定位准确性较高。通过实验结果可以看出,该算子是传统边缘检测算子中效果较好的算子之一。Marr-Hildreth算子:该算子首先通过高斯函数对图像作平滑处理,因此对噪声的抑制作用比较明显,但同时也可能将原有的边缘也平滑了,造成某些边缘无法检测(T越到。此外高斯函数中方差参数b(T越大,检测到的图像细节越丰富,但对噪声抑制能力相对下降,易出现伪边缘;反之,则抗噪声性能提高,但边缘定位准确性下降,易丢失许多真边缘,因此,对于不同图像应选择不同参数。参考文献:[11《数字图像中边缘算法的实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新生儿骨折的临床护理
- 2024年汽车维修工考试学习路径
- 一年级语文考试模拟试题分享试题及答案
- 文化差异试题答案及解析
- 2024年宠物营养师考点提醒
- 全面考量汽车美容师考试内容试题及答案
- 商场服务测试题目及答案
- 全面备考的二手车评估师考试内容试题及答案
- 二手车市场监管政策分析试题及答案
- 公共事业管理自考重要考题试题及答案
- 2024年北京大学强基计划物理试题(附答案)
- 《多变的镜头》课件 2024-2025学年人美版(2024)初中美术七年级上册
- Oracle数据库维保服务方案
- 2024智慧园区系统建设规范
- 传感器技术-武汉大学
- GB/T 44413-2024城市轨道交通分类
- PC信息系统运行维护服务方案
- 四川长虹电子控股集团有限公司招聘笔试题库2024
- 基于单元主题的小学英语跨学科学习活动的实践与研究
- 新生儿肺炎课件
- 【案例】合同能源托管模式下开展校园综合能源建设方案-中教能研院
评论
0/150
提交评论