山西临汾平阳中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第1页
山西临汾平阳中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第2页
山西临汾平阳中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第3页
山西临汾平阳中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第4页
山西临汾平阳中学2022-2023学年数学九年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2019的值为()A.0 B.﹣1 C.1 D.(3)20192.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥3.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米 B.米 C.米 D.米4.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为()A.900个 B.1080个 C.1260个 D.1800个5.如图,是由等腰直角经过位似变换得到的,位似中心在轴的正半轴,已知,点坐标为,位似比为,则两个三角形的位似中心点的坐标是()A. B. C. D.6.下列命题正确的是()A.三点确定一个圆 B.圆中平分弦的直径必垂直于弦C.矩形一定有外接圆 D.三角形的内心是三角形三条中线的交点7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个 B.3个 C.2个 D.1个8.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形9.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS10.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C. D.∠DBC=90°11.若点,,在反比例函数的图象上,则y1,y2,y3的大小关系是()A. B. C. D.12.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.5二、填空题(每题4分,共24分)13.在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是________.14.若代数式是完全平方式,则的值为______.15.如图,在⊙O中,弦AB,CD相交于点P,∠A=30°,∠APD=65°,则∠B=_____.16.若点M(1,y1),N(1,y2),P(,y3)都在抛物线y=mx2+4mx+m2+1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).17.在平面直角坐标系中,点为原点,抛物线与轴交于点,以为一边向左作正方形,点为抛物线的顶点,当是锐角三角形时,的取值范围是__________.18.若某斜面的坡度为,则该坡面的坡角为______.三、解答题(共78分)19.(8分)如图,正方形ABCD的过长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD、BC交于点F、E,连接AE.(1)求证:AQ⊥DP;(2)求证:AO2=OD•OP;(3)当BP=1时,求QO的长度.20.(8分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.(1)求一次函数的表达式;(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.21.(8分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?22.(10分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.23.(10分)已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.24.(10分)如图,抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.(1)求此抛物线的表达式;(2)求过B、C两点的直线的函数表达式;(3)点P是第一象限内抛物线上的一个动点.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点P的坐标,若不存在,请说明理由;25.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.26.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=1.求BF的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据关于x轴对称的点,横坐标不变,纵坐标互为相反数的概念,求出P1P2的坐标,得出a,b的值代入(a+b)2019求值即可.【详解】因为关于x轴对称横坐标不变,所以,a-1=2,得出a=3,又因为关于x轴对称纵坐标互为相反数,所以b-1=-5,得出b=-4(a+b)2019=(3-4)2019即.故答案为:B【点睛】本题考查关于x轴对称的点,横坐标不变,纵坐标互为相反数的概念和有理数的幂运算原理,利用-1的偶次幂为1,奇次幂为它本身的原理即可快速得出答案为-1.2、D【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【详解】解:主视图和左视图都是三角形,此几何体为椎体,俯视图是一个圆,此几何体为圆锥.故选:D.【点睛】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.3、B【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【详解】解:作AD⊥BC于点D,则BD=+0.3=,∵cosα=,∴cosα=,解得,AB=米,故选B.【点睛】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.4、C【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【详解】估计本周全班同学各家总共丢弃塑料袋的数量为(个).【点睛】本题考查了用样本估计总体的问题,掌握算术平均数的公式是解题的关键.5、A【分析】先确定G点的坐标,再结合D点坐标和位似比为1:2,求出A点的坐标;然后再求出直线AG的解析式,直线AG与x的交点坐标,即为这两个三角形的位似中心的坐标..【详解】解:∵△ADC与△EOG都是等腰直角三角形∴OE=OG=1∴G点的坐标分别为(0,-1)∵D点坐标为D(2,0),位似比为1:2,∴A点的坐标为(2,2)∴直线AG的解析式为y=x-1∴直线AG与x的交点坐标为(,0)∴位似中心P点的坐标是.故答案为A.【点睛】本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键.6、C【分析】根据确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,进行判断即可.【详解】∵不在一条直线上的三点确定一个圆,∴A错误;∵圆中平分弦(不是直径)的直径必垂直于弦,∴B错误;∵矩形一定有外接圆,∴C正确;∵三角形的内心是三角形三条角平分线的交点,∴D错误;故选:C.【点睛】本题主要考查真假命题的判断,掌握确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,是解题的关键.7、B【解析】试题解析:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有

,即b=,∴tan∠CAD=.故④不正确;故选B.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.8、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.9、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【点睛】本题考查科学计算器的使用方法,属基础题.10、A【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,

∴AF=BF,,∠DBC=90°,

∴B、C、D正确;

∵点F不一定是OC的中点,

∴A错误.故选:A.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.11、D【分析】由于反比例函数的系数是-8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出的值即可进行比较.【详解】解:∵点、、在反比例函数的图象上,∴,,,又∵,∴.故选:D.【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.12、D【分析】根据三角形中位线定理可知EF=DN,求出DN的最大值即可.【详解】解:如图,连结DN,

∵DE=EM,FN=FM,

∴EF=DN,

当点N与点B重合时,DN的值最大即EF最大,

在Rt△ABD中,∵∠A=90°,AD=6,AB=8,

∴,

∴EF的最大值=BD=1.

故选:D.【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.二、填空题(每题4分,共24分)13、【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【详解】画树状图图如下:∴一共有20种情况,有6种情况两次都摸到红球,∴两次都摸到红球的概率是.故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14、【分析】利用完全平方式的结构特征判断即可确定出m的值.【详解】解:∵代数式x2+mx+1是一个完全平方式,

∴m=±2,

故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15、35°【分析】先根据三角形外角性质求出∠C的度数,然后根据圆周角定理得到∠B的度数.【详解】解:∵∠APD=∠C+∠A,∴∠C=65°﹣30°=35°,∴∠B=∠C=35°.故答案为35°.【点睛】本题主要考查的是三角形的外角性质以及圆周角定理,这是一道综合性几何题,掌握三角形的外角性质以及圆周角定理是解题关键.16、y1<y3<y1【分析】利用图像法即可解决问题.【详解】y=mx1+4mx+m1+1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y1.故答案为:y1<y3<y1.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.17、或【分析】首先由抛物线解析式求出顶点A的坐标,然后再由对称轴可判定△AHP为等腰直角三角形,故当是锐角三角形时,,即可得出的取值范围.【详解】∵∴顶点A的坐标为令PB与对称轴相交于点H,如图所示∴PH=AH,即△AHP为等腰直角三角形∴当是锐角三角形时,,∴BP=OP,P(0,c)∴或故答案为或.【点睛】此题主要考查二次函数图象与几何图形的综合运用,解题关键是找出临界点直角三角形,即可得出取值范围.18、30°【分析】根据坡度与坡比之间的关系即可得出答案.【详解】∵∴坡面的坡角为故答案为:【点睛】本题主要考查坡度与坡角,掌握坡度与坡角之间的关系是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)详见解析;(3)QO=.【分析】(1)由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP.(2)根据相似三角形的性质得到AO2=OD•OP(3根据相似三角形的性质得到BE=,求得QE=,由△QOE∽△PAD,可得,解决问题.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;(2)证明:∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP.(3)解:∵BP=1,AB=3,∴AP=4,∵△PBE∽△PAD,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴=∴QO=.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.20、(1);(2)1或9.【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,解得,所以一次函数的表达式为y=x+5.(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得,x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,解得m=1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.21、(1)22%;(2)22元.【分析】(1)设年平均增长率为x,根据东部华侨城景区在238年春节长假期间,共接待游客达22万人次,预计在2222年春节长假期间,将接待游客达1.8万人次.列出方程求解即可;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得关于y的方程,解方程并对方程的解作出取舍即可.【详解】解:(1)设年平均增长率为x,由题意得:22(1+x)2=1.8,解得:x1=2.2=22%,x2=﹣2.2(舍).答:年平均增长率为22%;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得:(y﹣6)[322+32(25﹣y)]=6322,整理得:y2﹣41y+422=2,解得:y1=22,y2=3.∵让顾客获得最大优惠,∴y=22.答:当每杯售价定为22元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6322元的利润额.

【点睛】本题考查了一元二次方程在实际问题中的应用,理清题中的数量关系并正确列出方程是解题的关键.22、AC=10,BD=10【分析】根据菱形的性质可得Rt△ABO中,∠ABO=∠ABD=∠ABC=30°,则可得AO和BO的长,根据AC=2AO,BD=2BO可得AC和BD的长;【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC,OB=OD=BD,∠ABD=∠ABC=30°,在Rt△ABO中,AB=10,∠ABO=∠ABD=30°,∴AO=AB=5,BO=AB=5,∴AC=2AO=10,BD=2BO=10.【点睛】本题主要考查了菱形的性质,解直角三角形,掌握菱形的性质,解直角三角形是解题的关键.23、(1)y=x2﹣x﹣3;(2)D(0,﹣6);(3)3≤h≤1【分析】(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,即可求解;(2)CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),即可求解;(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即可求解.【详解】解:(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)设CD=m,过点D作DH⊥BC交BC的延长线于点H,则CH=HD=m,tan∠ADC==tan∠DBC=,解得:m=3或﹣4(舍去﹣4),故点D(0,﹣6);(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);平移后抛物线的表达式为:y=x2﹣x﹣3﹣h,当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即﹣3=×9+﹣h,解得:h=1,故3≤h≤1.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法求解析式、三角函数的定义及二次函数平移的特点.24、(1)y=﹣x2+x+4;(2)y=﹣x+4;(3)存在,(1,4)或(,).【分析】(1)将点A,B的坐标代入y=﹣x2+bx+c即可;(2)先求出点C的坐标为(0,4),设直线BC的解析式为y=kx+4,再将点B(4,0)代入y=kx+4即可;(3)先判断存在点P,求出AC,BC的长及∠OCB=∠OBC=45°,设点P坐标为(m,﹣m2+m+4),则点Q(m,﹣m+4),用含m的代数式表示出QM,AM的长,然后分①当AC=AQ时,②当AC=CQ时,③当CQ=AQ时三种情况进行讨论,列出关于m的方程,求出m的值,即可写出点P的坐标.【详解】(1)将点A(﹣3,0),B(4,0)代入y=﹣x2+bx+c,得,,解得,,∴此抛物线的表达式为y=﹣x2+x+4;(2)在y=﹣x2+x+4中,当x=0时,y=4,∴C(0,4),设直线BC的解析式为y=kx+4,将点B(4,0)代入y=kx+4,得,k=﹣1,∴直线BC的解析式为y=﹣x+4;(3)存在,理由如下:∴A(﹣3,0),B(4,0),C(0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论