版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上2.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±3.在10张奖券中,有2张中奖,某人从中任抽一张,则他中奖的概率是()A. B. C. D.4.如图,该几何体的主视图是()A. B. C. D.5.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为()A.2- B. C. D.16.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.已知关于的二次函数的图象在轴上方,并且关于的分式方程有整数解,则同时满足两个条件的整数值个数有().A.2个 B.3个 C.4个 D.5个8.下列各组图形中,一定相似的是()A.任意两个圆B.任意两个等腰三角形C.任意两个菱形D.任意两个矩形9.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y110.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.-1<x<2 B.x>2 C.x<-1 D.x<-1或x>211.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%12.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定二、填空题(每题4分,共24分)13.已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:__________.14.如图,假设可以在两个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是______.15.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.16.如果将抛物线向上平移,使它经过点那么所得新抛物线的解析式为____________.17.___________18.如图,⊙O是△ABC的外接圆,D是AC的中点,连结AD,BD,其中BD与AC交于点E.写出图中所有与△ADE相似的三角形:___________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.20.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数()的图象交于,两点,已知点坐标为.(1)求一次函数和反比例函数的解析式;(2)连接,,求的面积.21.(8分)如图,点E为□ABCD中一点,EA=ED,∠AED=90º,点F,G分别为AB,BC上的点,连接DF,AG,AD=AG=DF,且AG⊥DF于点H,连接EG,DG,延长AB,DG相交于点P.(1)若AH=6,FH=2,求AE的长;(2)求证:∠P=45º;(3)若DG=2PG,求证:∠AGE=∠EDG.22.(10分)解不等式组,将解集在数轴上表示出来,并求出此不等式组的所有整数解.23.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.24.(10分)解方程:2x2﹣4x+1=1.25.(12分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.26.如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BD=BC,将△AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设△AOB与△BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0<t≤2,2<t≤m,m<t<n时函数解析式不同).(1)点B的坐标为,点D的坐标为;(2)求S与t的函数解析式,并写出t的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【解析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.2、C【解析】x2+6x+4=0,移项,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故选C.3、D【分析】根据概率的计算方法代入题干中的数据即可求解.【详解】由题意知:概率为,故选:D【点睛】此题考查概率的计算方法:即发生事件的次数除以总数即可.4、C【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看易得是1个大正方形,大正方形左上角有个小正方形.故答案选:C.【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.5、C【分析】如图,连接BB′,延长BC′交AB′于点D,证明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的长,即可解决问题.【详解】解:如图,连接BB′,延长BC′交AB′于点D,
由题意得:∠BAB′=60°,BA=B′A,
∴△ABB′为等边三角形,
∴∠ABB′=60°,AB=B′B;
在△ABC′与△B′BC′中,∴△ABC′≌△B′BC′(SSS),
∴∠DBB′=∠DBA=30°,
∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故选:C.【点睛】本题考查旋转的性质,全等三角形的性质和判定,等边三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线.作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.6、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.7、B【解析】关于的二次函数的图象在轴上方,确定出的范围,根据分式方程整数解,确定出的值,即可求解.【详解】关于的二次函数的图象在轴上方,则解得:分式方程去分母得:解得:当时,;当时,(舍去);当时,;当时,;同时满足两个条件的整数值个数有3个.故选:B.【点睛】考查分式方程的解,二次函数的图象与性质,熟练掌握分式方程以及二次函数的性质是解题的关键.8、A【分析】根据相似图形的性质,对各选项分析判断即可得出答案.【详解】A、任意两个圆,一个圆放大或缩小后能够与另外一个圆重合,所以任意两个圆一定是相似图形,故选A.B、任意两个等腰三角形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误.D、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误.故选A.【点睛】本题考查了相似图形的概念,灵活运用相似图形的性质是解题的关键.9、A【解析】试题分析:∵反比例函数中,k=-4<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大.∵x1<x2<0<x3,∴0<y1<y2,y3<0,∴y3<y1<y2故选A.考点:反比例函数图象上点的坐标特征.10、D【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.11、B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.12、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.二、填空题(每题4分,共24分)13、y=-x+2(答案不唯一)【解析】①图象经过(1,1)点;②当x>1时.y随x的增大而减小,这个函数解析式为y=-x+2,故答案为y=-x+2(答案不唯一).14、【分析】先设一个阴影部分的面积是x,可得整个阴影面积为3x,整个图形的面积是7x,再根据几何概率的求法即可得出答案.【详解】设一个阴影部分的面积是x,∴整个阴影面积为3x,整个图形的面积是7x,∴这个点取在阴影部分的概率是=,故答案为:【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15、1【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用100÷5%求出豆子总数,最后再减去红豆子数即可.【详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为100÷5%=2000粒,所以该袋中黑豆约有2000-100=1粒.故答案为1.【点睛】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键.16、【分析】设平移后的抛物线解析式为,把点A的坐标代入进行求值即可得到b的值.【详解】解:设平移后的抛物线解析式为,把A(0,3)代入,得3=−1+b,解得b=4,则该函数解析式为.故答案为:.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.17、【分析】代入特殊角度的三角函数值计算即可.【详解】故答案为:.【点睛】本题考查了特殊角度的三角函数值计算,熟记特殊角度的三角函数值是关键.18、,【分析】根据两角对应相等的两个三角形相似即可判断.【详解】解:∵,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共78分)19、(1);(2),,(,0).【分析】(1)证得BD是CF的垂直平分线,求得,作DG⊥BF于G,求得点D的坐标为,从而求得反比例函数的解析式;(2)分3种情形,分别画出图形即可解决问题.【详解】(1)∵四边形ABOC是矩形,∴AB=OC,AC=OB,,根据对折的性质知,,∴,,AB=DB,又∵D是CF的中点,∴BD是CF的垂直平分线,∴BC=BF,,∴,∵,∴,∵点B的坐标为,∴,在中,,,,∴,过D作DG⊥BF于G,如图,在中,,,,∴,,∴,∴点D的坐标为,代入反比例函数的解析式得:,∴反比例函数的解析式;(2)如图①、②中,作EQ∥x轴交反比例函数的图象于点Q,在中,,,∴,∴点E的坐标为,点Q纵坐标与点E纵坐标都是,代入反比例函数的解析式得:,解得:,∴点Q的坐标为,∴,∵四点构成平行四边形,∴∴点的坐标分别为,;如图③中,构成平行四边形,作QM∥y轴交轴于点M,∵四边形为平行四边形,∴,,∴,∴,,∴点的坐标为,∴∴,∴点的坐标为,综上,符合条件点的坐标有:,,;【点睛】本题考查反比例函数综合题、矩形的性质、翻折变换、直角三角形中30度角的性质、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题.20、(1)一次函数的解析式为,反比例函数的解析式为;(2)6【分析】(1)由点的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立一次函数、反比例函数得方程,解方程组即可求出AB点坐标,求出直线与轴的交点坐标后,即可求出和,继而求出的面积.【详解】解:(1)将代入解析式与得,,,一次函数的解析式为,反比例函数的解析式为;(2)解方程组得或,,设直线与轴,轴交于,点,易得,即,.【点睛】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出的面积.21、(1);(2)见详解;(3)见详解【分析】(1)在Rt△ADH中,设AD=DF=x,则DH=x-2,由勾股定理,求出AD的长度,由等腰直角三角形的性质,即可求出AE的长度;(2)根据题意,设∠ADF=2a,则求出∠FAH=,然后∠ADG=∠AGD=,再根据三角形的外角性质,即可得到答案;(3)过点A作AM⊥DP于点M,连接EM,EF,根据等腰直角三角形的判定和性质,全等三角形的判定和性质,得到角之间的关系,从而通过等量互换,即可得到结论成立.【详解】解:(1)∵AG⊥DF于点H,∴∠AHD=90°,∵AH=6,FH=2,在Rt△ADH中,设AD=DF=x,则DH=DFFH=x-2,由勾股定理,得:,∴,∴,即AD=DF=AG=10,∵EA=ED,∠AED=90º,∴△ADE是等腰直角三角形,∴AE=DE=;(2)如图:∵∠AED=90º,AG⊥DF,∴∠EAH=∠EDH,设∠ADF=2a,∵DA=DF,则∠AFH=∠DAF=,∴∠FAH=,∴∠DAH=,∵AD=AG,∴∠ADG=∠AGD=,∴;(3)过点A作AM⊥DP于点M,连接EM,EF,如图:∵AD=AG,DG=2PG,∴PG=GM=DM,∵∠P=45°,∴△APM是等腰直角三角形,∴AM=PM=DG,∵∠ANO=∠DNM,∠AED=∠AMD=90°,∴∠OAM=∠ODG,∵AE=DE,AM=DG,∴△AEM≌△DEG,∴EM=EG,∠AEM=∠DEG,∴∠AED+∠DEM=∠DEM+∠MEG,∴∠MEG=∠AED=90°,∴△MEG是等腰直角三角形;∴∠EMG=45°,∵AM⊥DP,∴∠AME=∠EMG=45°,∴ME是∠AMP的角平分线,∵AM=PM,∴ME⊥AP,∵∠AOH=∠DOE,∴∠OAH=∠ODE,∴△AEG≌△DEF(SAS),∴∠AEG=∠DEF,∴∠AED+∠AEF=∠AEF+∠FEG,∴∠FEG=∠AED=90°,∴∠FEG+∠MEG=180°,即点F、E、M,三点共线,∴MF⊥AP,∵AM平分∠DAG,∴∠GAM=∠DAM,∵∠EAN+∠DAM=45°,∴∠EAN+∠GAM=45°,∵∠PAG+∠GAM=45°,∴∠EAN=∠PAG,∵∠PAG+∠AFH=∠DFE+∠AFH=90°,∴∠EAN=∠PAG=∠DFE,∵△AEG≌△DEF,∴∠AGE=∠DFE=∠EAN,∵∠EAN=∠EDM,∴∠AGE=∠EDM,∴∠AGE=∠EDG.【点睛】本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,三角形的内角和定理,以及角平分线的性质,解题的关键是熟练掌握所学的性质进行证明,注意正确做出辅助线,找出角之间的关系,边之间的关系,从而进行证明.22、见解析【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上,由两不等式解集的公共部分可得不等式组的解集,即可求得解集内所有整数解.【详解】解:解不等式,得解不等式,得则不等式组的解集为在数轴上表示如下:此不等式组的整数解为,0,1.【点睛】本题考查解一元一次不等式组:先分别解两个不等式,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了数轴表示不等式的解集.23、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴当y=0时,x=-3,∴OB=3∴S=×3×5=7.5考点:一次函数与反比例函数的综合问题.24、x1=1+,x2=1﹣【分析】先把方程两边除以2,变形得到x2-2x+1=,然后利用配方法求解.【详解】x2-2x+1=,
(x-1)2=,
x-1=±,
所以x1=1+,x2=1-.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.25、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴yE=yP,即点E、P关于对称轴对称∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度城市道路改造爆破钻孔施工合同
- 铝材电子商务平台建设合同(2024年度)
- 2024年度软件许可合同:某互联网公司与中国某政府机关关于办公软件许可2篇
- 土方测量合同模板(2篇)
- 2024年度技术秘密许可合同:某企业与技术持有者关于技术秘密许可使用的合同2篇
- 工程中介合同(2篇)
- 物业居间合同范本版
- 2024年度钢筋购销与技术支持合同3篇
- 土石方工程居间费合同3篇
- 2024年度船舶修造劳务分包合同
- 毕业设计工程造价预算书
- 2023年中国机械设备产业的国产化大趋势
- 河南大学课件模板
- 建设养牛场成本预算
- 景区反恐防暴应急演练方案
- 绿色资源利用案列
- 医院电子病历系统应用水平分级评价 4级实证材料基础项
- 初中历史-建设有中国特色的社会主义教学课件设计
- 观课报告-多边形的面积整理观课报告
- 双侧股骨头坏死的护理查房
- 管理沟通知到章节答案智慧树2023年浙江大学
评论
0/150
提交评论