版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.2.在比例尺为1:800000的“中国政区”地图上,量得甲市与乙市之间的距离是2.5cm,则这两市之间的实际距离为()km.A.20000000 B.200000 C.200 D.20000003.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)4.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是()A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求证:AB=CDB.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求证:AD=BCC.已知:在⊙O中,∠AOB=∠COD.求证:弧AD=弧BC,AD=BCD.已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD5.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B. C. D.6.若关于的一元二次方程有实数根,则取值范围是()A. B. C. D.7.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A. B. C. D.8.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为(
)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)9.用配方法解方程时,配方结果正确的是()A. B.C. D.10.方程的两根分别是,则等于()A.1 B.-1 C.3 D.-311.下列方程中,没有实数根的是()A. B. C. D.12.在反比例函中,k的值是()A.2 B.-2 C.1 D.二、填空题(每题4分,共24分)13.如图,在坐标系中放置一菱形,已知,,先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转2019次,点的落点依次为,,,…,则的坐标为__________.14.若、是方程的两个实数根,且x1+x2=1-x1x2,则的值为________.15.不透明布袋里有5个红球,4个白球,往布袋里再放入x个红球,y个白球,若从布袋里摸出白球的概率为,则y与x之间的关系式是_____.16.对于两个不相等的实数a、b,我们规定max{a、b}表示a、b中较大的数,如max{1,1}=1.那么方程max{1x,x﹣1}=x1﹣4的解为.17.已知实数a、b、c在数轴上的位置如图所示,化简=_____.18.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=_____.三、解答题(共78分)19.(8分)用适当的方法解下列一元二次方程:(1)x2+4x﹣2=0;(2)(x+2)2=3(x+2).20.(8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.21.(8分)锐角中,,为边上的高线,,两动点分别在边上滑动,且,以为边向下作正方形(如图1),设其边长为.(1)当恰好落在边上(如图2)时,求;(2)正方形与公共部分的面积为时,求的值.22.(10分)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数的图象上,边CD在x轴上,点B在y轴上.已知.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标.(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.23.(10分)解下列方程:(1)(2)24.(10分)在正方形中,点是直线上动点,以为边作正方形,所在直线与所在直线交于点,连接.(1)如图1,当点在边上时,延长交于点,与交于点,连接.①求证:;②若,求的值;(2)当正方形的边长为4,时,请直接写出的长.25.(12分)函数的图象的对称轴为直线.(1)求的值;(2)将函数的图象向右平移2个单位,得到新的函数图象.①直接写出函数图象的表达式;②设直线与轴交于点A,与y轴交于点B,当线段AB与图象只有一个公共点时,直接写出的取值范围.26.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.2、C【分析】比例尺=图上距离:实际距离.列出比例式,求解即可得出两地的实际距离.【详解】设这两市之间的实际距离为xcm,则根据比例尺为1:800000,列出比例式:1:800000=2.5:x,解得x=1.1cm=200km故选:C.【点睛】本题考查了比例尺的意义,注意图上距离跟实际距离单位要统一.3、B【解析】用关于原点的对称点的坐标特征进行判断即可.【详解】点P(-1,2)关于原点的对称点的坐标为(1,-2),故选:B.【点睛】根据两个点关于原点对称时,它们的坐标符号相反.4、D【分析】根据命题的概念把原命题写成:“如果...求证...”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果...求证...”的形式,是解题的关键.5、A【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:
红
红
红
绿
绿
红
﹣﹣﹣
(红,红)
(红,红)
(绿,红)
(绿,绿)
红
(红,红)
﹣﹣﹣
(红,红)
(绿,红)
(绿,红)
红
(红,红)
(红,红)
﹣﹣﹣
(绿,红)
(绿,红)
绿
(红,绿)
(红,绿)
(红,绿)
﹣﹣﹣
(绿,绿)
绿
(红,绿)
(红,绿)
(红,绿)
(绿,绿)
﹣﹣﹣
∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴,故选A.6、D【分析】根据△=b2-4ac≥0,一元二次方程有实数根,列出不等式,求解即可.【详解】解:∵关于x的一元二次方程有实数根,
∴
解得:.
故选:D.【点睛】本题考查一元二次方程根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.7、C【解析】试题分析:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合.故选C.考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.8、A【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.9、A【分析】利用配方法把方程变形即可.【详解】用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.10、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:∵的两根分别是,∴,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系进行解题.11、D【分析】要判定所给方程根的情况,只要分别求出它们的判别式,然后根据判别式的正负情况即可作出判断.没有实数根的一元二次方程就是判别式的值小于0的方程.【详解】解:A、x2+x=0中,△=b2-4ac=1>0,有实数根;
B、x2-2=0中,△=b2-4ac=8>0,有实数根;
C、x2+x-1=0中,△=b2-4ac=5>0,有实数根;
D、x2-x+1=0中,△=b2-4ac=-3,没有实数根.
故选D.【点睛】本题考查一元二次方程根判别式△:即(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12、B【分析】根据反比例函数的定义,直接可得出k的值.【详解】∵反比例一般式为:∴k=-1故选:B.【点睛】本题考查反比例函数的一般式,注意本题的比例系数k是-1而非1.二、填空题(每题4分,共24分)13、(2326,0)【分析】根据题意连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移2.由于2029=336×6+3,因此点向右平移2322(即336×2)即可到达点,根据点的坐标就可求出点的坐标.【详解】解:连接AC,如图所示:∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=2,∴AC=2.画出第5次、第6次、第7次翻转后的图形,如上图所示.由图可知:每翻转6次,图形向右平移2.∵2029=336×6+3,∴点向右平移2322(即336×2)到点.∵的坐标为(2,0),∴的坐标为(2+2322,0),∴的坐标为(2326,0).故答案为:(2326,0).【点睛】本题考查菱形的性质、等边三角形的判定与性质等知识,考查操作、探究、发现规律的能力,发现“每翻转6次,图形向右平移2”是解决本题的关键.14、1【详解】若x1,x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x1+x2=2m;x1·x2=m2−m−1,∵x1+x2=1-x1x2,∴2m=1-(m2−m−1),解得:m1=-2,m2=1.又∵一元二次方程有实数根时,△,∴,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程的两根是,则,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=.15、x﹣2y=1.【分析】根据从布袋里摸出白球的概率为,列出=,整理即可得.【详解】根据题意得=,整理,得:x﹣2y=1,故答案为:x﹣2y=1.【点睛】本题考查概率公式的应用,熟练掌握概率公式建立方程是解题的关键.16、【分析】直接分类讨论得出x的取值范围,进而解方程得出答案.【详解】解:当1x>x﹣1时,故x>﹣1,则1x=x1﹣4,故x1﹣1x﹣4=0,(x﹣1)1=5,解得:x1=1+,x1=1﹣;当1x<x﹣1时,故x<﹣1,则x﹣1=x1﹣4,故x1﹣x﹣1=0,解得:x3=1(不合题意舍去),x4=﹣1(不合题意舍去),综上所述:方程max{1x,x﹣1}=x1﹣4的解为:x1=1+,x1=1﹣.故答案为:x1=1+,x1=1﹣.【点睛】考核知识点:一元二次方程.理解规则定义是关键.17、﹣a+b【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】解:由图可知:a<b<0<c,而且,
∴a+c<0,b+c<0,
∴,
故答案为:.【点睛】本题考查了二次根式的性质与化简,绝对值的性质,根据数轴判断出a、b、c的情况是解题的关键.18、1.【分析】根据题意,想要求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所构成的矩形的面积即可,而矩形的面积为双曲线y=的系数k,由此即可求解.【详解】∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=1.故答案为1.【点睛】本题主要考查反比例函数系数k的几何意义,解题的关键是熟练掌握根据反比例函数系数k的几何意义求出矩形的面积.三、解答题(共78分)19、(1)x=﹣2±;(2)x=﹣2或x=1【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2+4x﹣2=0,∴x2+4x+4=6,∴(x+2)2=6,∴x=﹣2±.(2)∵(x+2)2=3(x+2),∴(x+2)(x+2﹣3)=0,∴x=﹣2或x=1.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20、(1)相切,证明见解析;(2)6.【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=,推出,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan∠E=,∴,∴CD=BC=6,在Rt△ABC中,AC=.【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.21、(1);(2)或1.【解析】(1)根据已知条件,求出AD的值,再由△AMN∽△ABC,确定比例关系求出x的值即可;(2)当正方形与公共部分的面积为时,可分两种情况,一是当在△ABC的内部,二是当在△ABC的外部,当当在△ABC的外部时,根据相似,表达出重叠部分面积,再列出方程,解出x的值即可.【详解】解:(1)∵,为边上的高线,,∴∴AD=1,设AD交MN于点H,∵MN∥BC,∴△AMN∽△ABC,∴,即,解得,∴当恰好落在边上时,(2)①当在△ABC的内部时,正方形与公共部分的面积即为正方形的面积,∴,解得②当在△ABC的外部时,如下图所示,PM交BC于点E,QN交BC于点F,AD交MN于点H,设HD=a,则AH=1-a,由得,解得∴矩形MEFN的面积为即解得(舍去),综上:正方形与公共部分的面积为时,或1.【点睛】本题主要考查了相似三角形的对应高的比等于对应边的比的性质,正方形的四边相等的性质以及方程思想,列出比例式是解题的关键.22、(1)点A在该反比例函数的图像上,见解析;(2)Q的横坐标是;(3)见解析.【分析】(1)连接PC,过点P作轴于点H,由此可求得点P的坐标为(2,);即可求得反比例函数的解析式为,连接AC,过点B作于点C,求得点A的坐标,由此即可判定点A是否在该反比例函数的图象上;(2)过点Q作轴于点M,设,则,由此可得点Q的坐标为,根据反比例函数图象上点的性质可得,解方程球队的b值,即可求得点Q的横坐标;(3)连接AP,,,结合(1)中的条件,将正六边形ABCDEF先向右平移1个单位,再向上平移个单位(平移后的点B、C在反比例函数的图象上)或将正六边形ABCDEF向左平移2个单位(平移后的点E、F在反比例函数的图象上).【详解】解:(1)连接PC,过点P作轴于点H,在正六边形ABCDEF中,点B在y轴上和都是含有角的直角三角形,,点P的坐标为反比例函数的表达式为连接AC,过点B作于点C,,点A的坐标为当时,所以点A在该反比例函数的图像上(2)过点Q作轴于点M六边形ABCDEF是正六边形,设,则点Q的坐标为解得,点Q的横坐标是(3)连接AP,,平移过程:将正六边形ABCDEF先向右平移1个单位,再向上平移个单位,或将正六边形ABCDEF向左平移2个单位【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标相结合是解决问题的关系.23、(1);(2)【分析】(1)把方程右边的项作为整体移到左边,利用因式分解的方法解方程即可;(2)利用配方法把方程化为:再利用直接开平方法解方程即可.【详解】解:(1)原方程可化为:解得:(2)∵∴解得:.【点睛】本题考查的是一元二次方程的解法,掌握因式分解与配方法解方程是本题的解题关键.24、(1)①证明见解析;②;(2)或.【分析】(1)通过正方形的性质和等量代换可得到,从而可用SAS证明,利用全等的性质即可得出;(2)先证明,则有,进而可证明,得到,再利用得出,作交EH于点P,则,利用相似三角形的性质得出,则问题可解;(3)设,则,表示出EH,然后利用解出x的值,进而可求EH的长度;当E在BA的延长线上时,画出图形,用同样的方法即可求EH的长度.【详解】(1)①证明:∵四边形ABCD,DEFG都是正方形∴∵在和中,②∵四边形DEFG是正方形在和中,在和中,∵作交EH于点P,则(3)当点E在AB边上时,设,则解得∴当E在BA的延长线上时,如下图∵四边形ABCD,DEFG都是正方形∴∵在和中,∴点G在BC边上∵四边形DEFG是正方形在和中,设,则解得∴综上所述,EH的长度为或.【点睛】本题主要考查全等三角形的判定及性质,相似三角形的判定及性质,正方形的性质,掌握全等三角形和相似三角形的判定及性质并分情况讨论是解题的关键.25、(1)m=3;(2)①;②.【分析】(1)根据二次函数的对称轴公式可得关于m的方程,解方程即可求出结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大型运动会安防系统合同
- 2024年度大数据分析服务合同标的明细
- 2024年专用:租赁合同保证金条款汇编
- 2024年度居民住宅铝合金门窗安装工程合同
- 2024年废旧物资回收协议
- 2024工程合规审查中的黑白合同问题探讨
- 04版智能硬件研发与制造分包合同
- 2024年国际货运代理及仓储物流合作合同
- 2024年度5G基站建设与运营合作协议
- 2024年一年级数学老师家长会
- 2024粮改饲工作总结五篇
- 合作收款合同协议书
- 2024至2030年中国生物质能发电行业市场深度调研及发展前景分析报告
- 铁路轨道铺设工程合同三篇
- 2024–2025学年高二化学下学期期末考点大串讲猜想01 原子结构与性质(8大题型)(解析版)
- 2024新沪教版英语初一上单词表(英译汉)
- 安徽省淮南市2023-2024学年高一上学期第二次月考数学试题2
- 高中体育校本教材
- JCT2088-2011 先张法预应力混凝土空心板梁
- 个人垫资合同范本
- 【基于重心法的S饮料公司配送中心选址探究15000字(论文)】
评论
0/150
提交评论