




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列条件:①∠AEC=∠C,②∠C=∠BFD,③∠BEC+∠C=180°,其中能判断ABCD的是()A.①②B.①③C.②D.①②③2.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60° C.70° D.80°3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等 B.一条边和一个锐角对应相等C.两条直角边对应相等 D.一条直角边和一条斜边对应相等4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ5.下列四个图形中,与图1中的图形全等的是()A. B. C. D.6.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为A. B.C. D.7.内角和等于外角和的2倍的多边形是()A.三角形 B.四边形 C.五边形 D.六边形8.下列式子是分式的是()A. B. C.+y D.9.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3 B.4 C.5 D.610.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.911.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. B.C.+4=9 D.12.一元二次方程,经过配方可变形为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.14.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为__________.15.如图,已知点是直线外一点,是直线上一点,且,点是直线上一动点,当是等腰三角形时,它的顶角的度数为________________.16.若,则分式的值为__________.17.已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.18.已知(a−1,5)和(2,b−1)关于x轴对称,则的值为_________.三、解答题(共78分)19.(8分)(1)如图1,在△ABC中,AB=AC,∠BAC=45°.△ABC的高AD、BE相交于点M.求证:AM=2CD;(2)如图2,在Rt△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,过点B作BE⊥AD,交AD的延长线于点E.若AD=3,则BE=.20.(8分)某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)___________,并写出该扇形所对圆心角的度数为___________,请补全条形统计图.(2)在这次抽样调查中,众数为___________,中位数为___________.21.(8分)如图,直线EF与x轴、y轴分别相交于点E、F,点E的坐标为(-8,0),点F的坐标为(0,6),点A的坐标为(-6,0),点P(x,y)是直线EF上的一个动点,且P点在第二象限内;(1)求直线EF的解析式;(2)在点P的运动过程中,写出△OPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究,当点P运动到什么位置(求P的坐标)时,△OPA的面积是?22.(10分)如图,点A、、、在同一直线上,,AF∥DE,.求证:.23.(10分)若一次函数的图象经过点.求的值,并在给定的直角坐标系中画出此函数的图象.观察此图象,直接写出当时,的取值范围.24.(10分)已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.25.(12分)如图,等腰三角形中,,,AD为底边BC上的高,动点从点D出发,沿DA方向匀速运动,速度为,运动到点停止,设运动时间为,连接BP.(0≤t≤8)(1)求AD的长;(2)设△APB的面积为y(cm²),求y与t之间的函数关系式;(3)是否存在某一时刻t,使得S△APB:S△ABC=1:3,若存在,求出的值;若不存在,说明理由.(4)是否存在某一时刻,使得点P在线段AB的垂直平分线上,若存在,求出的值;若不存在,说明理由.26.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A在x轴上,AB=AC,∠BAC=90°,且A(2,0)、B(3,3),BC交y轴于M,(1)求点C的坐标;(2)连接AM,求△AMB的面积;(3)在x轴上有一动点P,当PB+PM的值最小时,求此时P的坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:①由“内错角相等,两直线平行”知,根据能判断.②由“同位角相等,两直线平行”知,根据能判断.③由“同旁内角互补,两直线平行”知,根据能判断.故选:.【点睛】本题考查的是平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2、B【解析】分析:如图,连接BF,在菱形ABCD中,∵∠BAD=80°,∴∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=CD,∠ABC=180°﹣∠BAD=180°﹣80°=100°.∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°.∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°.∵在△BCF和△DCF中,BC=CD,∠BCF=∠DCF,CF=CF,∴△BCF≌△DCF(SAS).∴∠CDF=∠CBF=60°.故选B.3、A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.5、C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.【点睛】本题主要考查了全等形的定义,形状、大小都相同图形为全等形.6、B【解析】试题分析:因为设甲车间每天能加工x个,所以乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程:.故选B.7、D【分析】设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180°(n-2)=360°×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:
180°(n-2)=360°×2,
解得:n=6,
故选:D.【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n-2).8、D【分析】根据分式的定义:形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式【详解】A.属于整式,不是分式;B.属于整式,不是分式;C.属于整式,不是分式;D.属于分式;故答案选D【点睛】本题主要考查了分式的概念,分式的分母必须含有字母,而分子可以含有字母,也可以不含字母.9、A【解析】角平分线上的点到角的两边的距离相等,故点P到AB的距离是3,故选A10、C【分析】首先根据Rt△ABC的勾股定理得出AB的长度,根据AM=AC得出BM的长度,然后根据BN=BC得出BN的长度,从而根据MN=BN-BM得出答案.【详解】∠ACB=90°,AC=40,CB=9AB===41又AM=AC,BN=BCAM=40,BN=9BM=AB-AM=41-40=1MN=BN-BM=9-1=8故选C考点:勾股定理11、A【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:,逆流航行时间为:,∴可得出方程:,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.12、A【解析】x2-4x+4-4-6=(x-2)2-10=0,即(x-2)2=10;故选A.二、填空题(每题4分,共24分)13、.【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB,BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).14、【解析】根据题意作E关于AD的对称点M,连接CM交AD于P,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CP+EP=CM,根据垂线段最短得出CP+EP≥,即可得出答案.【详解】作E关于AD的对称点M,连接CM交AD于P,连接EP,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,∴S△ABC=×BC×AD=×AB×CN,∴CN==,∵E关于AD的对称点M,∴EP=PM,∴CP+EP=CP+PM=CM,根据垂线段最短得出:CM≥CN,即CP+EP≥,即CP+EP的最小值是,故答案为.【点睛】本题考查了平面展开﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性.15、或或【分析】分AB边为腰或底画出图形求解即可.【详解】①当AB为腰时,如图,在△ABP1中,AB=AP1,此时顶角∠BAP1的度数为:20°;在△ABP2中,AB=BP2,此时顶角∠ABP2的度数为:180°-20°×2=140°;在△ABP3中,AB=BP3,此时顶角∠BAP3的度数为:180°-20°=160°;②当AB为底时,如图,在△ABP4中,AP4=BP4,此时顶角∠BAP4的度数为:180°-20°×2=140°.故答案为:或或.【点睛】此题主要考查了等腰三角形的判定以及三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.16、1【分析】首先将已知变形进而得出x+y=2xy,再代入原式求出答案.【详解】∵∴x+y=2xy∴====1故答案为:1.【点睛】此题主要考查了分式的值,正确将已知变形进而化简是解题关键.17、.【分析】利用正方形的性质证出△ABE≌△DAF,所以∠ABE=∠DAF,进而证得△GBF是直角三角形,利用直角三角形斜边中线等于斜边一半可知GH=BF,最后利用勾股定理即可解决问题.【详解】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=4、CF=CD﹣DF=4﹣1=3,∴BF==5,∴GH=BF=,故答案为:.【点睛】本题考点涉及正方形的性质、三角形全等的证明、直角三角形斜边中线定理、勾股定理等知识点,难度适中,熟练掌握相关性质定理是解题关键.18、-1【分析】根据两点关于x轴对称的坐标的关系,得a﹣1=2,b﹣1=﹣5,求出a,b的值,进而即可求解.【详解】∵和关于x轴对称,∴解得:,∴.故答案为:﹣1.【点睛】本题主要考查平面直角坐标系中,两点关于x轴对称坐标的关系,掌握两点关于x轴对称,横坐标相等,纵坐标互为相反数,是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)1.1.【分析】(1)根据全等三角形的判定和性质定理以及等腰三角形的性质定理,即可得到结论;(2)延长BE、AC交于F点,首先利用三角形内角和定理计算出∠F=∠ABF,进而得到AF=AB,再根据等腰三角形的性质可得BE=BF,然后证明△ADC≌△BFC,可得BF=AD,进而得到BE=AD,即可求解.【详解】(1)在△ABC中,∵∠BAC=41°,BE⊥AC,∴AE=BE,∵AD⊥BC,∴∠EAM=90°-∠C=∠EBC,在△AEM和△BEC中,∵,∴△AEM≌△BEC(ASA),∴AM=BC,∵AB=AC,AD⊥BC,∴BD=CD,∴BC=2CD,∴AM=2CD;(2)延长BE、AC交于F点,∵BE⊥EA,∴∠AEF=∠AEB=90°.∵AD平分∠BAC,∴∠FAE=∠BAE,∴∠F=∠ABE,∴AF=AB,∵BE⊥EA,∴BE=EF=BF,∵△ABC中,AC=BC,∠C=90°,∴∠CAB=41°,∴∠AFE=(180°﹣41°)÷2=67.1°,∠FAE=41°÷2=22.1°,∴∠CDA=67.1°,∵在△ADC和△BFC中,∵,∴△ADC≌△BFC(AAS),∴BF=AD,∴BE=AD=1.1,故答案为:1.1.【点睛】本题主要考查三角形全等的判定和性质定理以及等腰三角形的性质定理,添加辅助线,构造全等三角形,是解题的关键.20、(1),,见解析;(2)5天,6天【分析】(1)根据各部分所占比的和等于1列式可算出a,再用360°乘以所占百分比求出对应的圆心角的度数,然后用被抽查学生的人数乘以8所占百分比可求出8天的人数,补全条形图即可;(2)用众数和中位数的定义解答.【详解】解:(1),,(人),故补全条形统计图如下:(2)参加社会实践活动5天的人数最多,所以众数是5天;所有人参加社会实践活动的天数按照从少到多排列,第300人和第301人都是6天,所以中位数是6天.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21、(1)y=x+1;(2)S=x+18(﹣8<x<0);(3)点P的坐标为(﹣5,)时,△OPA的面积是.【分析】(1)用待定系数法直接求出;
(2)先求出OA,表示出PD,根据三角形的面积公式,可得函数解析式;再根据P(x,y)在第二象限内的直线上,可得自变量的取值范围;
(3)利用(2)中得到的函数关系式直接代入S值,求出x即可.【详解】解:(1)设直线EF的解析式为y=kx+b,由题意得:解得,k=;∴直线EF的解析式为y=x+1.(2)如图,
作PD⊥x轴于点D,∵点P(x,y)是直线y=x+1上的一个动点,点A的坐标为(﹣1,0)∴OA=1,PD=x+1∴S=OA•PD=×1×(x+1)=x+18(﹣8<x<0);(3)由题意得,x+18=,解得,x=﹣5,则y=×(﹣5)+1=,∴点P的坐标为(﹣5,)时,△OPA的面积是.【点睛】本题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,解题的关键是求出直线EF解析式.22、详见解析.【分析】先根据平行线的性质求出∠A=∠D,再利用线段的加减证得AB=DC,即可用“SAS”证明三角形全等.【详解】∵AF∥DE∴∠A=∠D∵AC=DB∴AC-DB=DB-BC即AB=DC在△ABF和△DCE中,∵∴△ABF≌△DCE【点睛】本题考查的是三角形全等的判定,掌握三角形的各个判定定理是关键.23、,图像见解析;.【分析】(1)把点代入一次函数解析式来求b的值,根据“两点确定一条直线”画图;(2)根据图象直接回答问题.【详解】(1)将点代入y=﹣2x+b,得2=-4+b解得:b=6∴y=﹣2x+6列表得:描点,并连线∴该直线如图所示:(2)确定直线与x轴的交点(3,0),与y轴的交点(0,6)由图象知:当时,的取值范围.【点睛】本题考查了一次函数的图象、一次函数图象上点的坐标特征等.一次函数的图象是一直线,根据“两点确定一条直线”来作图.24、见解析【分析】依据同角的余角相等,即可得到∠3=∠2,即可得出DE∥BC.【详解】解:证明:∵CD⊥AB(已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.25、(1)8;(2)y=1﹣3t(0≤t≤8);(3)存在,;(4)存在,【分析】(1)利用等腰三角形的性质以及勾股定理解决问题即可.(2)根据y=S△APB=S△ABD﹣S△PBD,化简计算即可.(3)由题意S△APB:S△ABC=1:3,构建方程即可解决问题.(4)由题意点P在线段AB的垂直平分线上,推出PA=PB,在Rt△PBD中,根据PB2=PD2+BD2,构建方程即可解决问题.【详解】(1)∵AB=AC,AD⊥BC,∴BC=DC=6cm,在Rt△ABD中,∵∠ADB=90°,AB=10cm,BD=6cm,∴AD===8(cm).(2)y=S△APB=S△ABD﹣S△PBD=×6×8﹣×6×t=﹣3t+1.∴y=1﹣3t(0≤t≤8).(3)∵S△APB:S△ABC=1:3,∴(1﹣3t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球建筑壁板和装饰板市场营销渠道与发展规模预测分析研究报告
- 2025-2030全球及中国邻氯苯甲腈行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国选举管理软件行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国薄膜太阳能组件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国用于牲畜管理的RFID标签行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国燃气轮机MRO行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国液晶数字显微镜行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国智能远程终端行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国在线时尚零售行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国医疗帐单行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 紧急采购申请单
- 小学道德与法治学科高级(一级)教师职称考试试题(有答案)
- 复旦大学英语水平测试大纲9300词汇表讲义
- (课件)肝性脑病
- DB63-T 1675-2018+建筑消防设施维护保养技术规范
- 西师版数学四年级下册全册教案
- DB11T 1894-2021 10kV及以下配电网设施配置技术规范
- 零星材料明细单
- 施工现场安全检查记录表(周)以及详细记录
- 2022专升本无机化学试卷答案
- 电子课件《英语(第一册)(第三版)》A013820英语第一册第三版Unit6
评论
0/150
提交评论