




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列条件中,不能判断是直角三角形的是()A. B. C. D.2.给出下列数:,其中无理数有()A.1个 B.2个 C.3个 D.4个3.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.6 B.8 C.8或10 D.104.下列根式中不是最简二次根式的是()A. B. C. D.5.到三角形三个顶点距离相等的点是()A.三条角平分线的交点 B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点6.已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.1027.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个 B.2个 C.3个 D.4个8.下面汉字的书写中,可以看做轴对称图形的是()A. B. C. D.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b210.某班级的一次数学考试成绩统计图如图,则下列说法错误的是()A.得分在70~80分的人数最多 B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人11.如图所示,在下列条件中,不能判断≌的条件是()A., B.,C., D.,12.点E(m,n)在平面直角坐标系中的位置如图所示,则坐标(m+1,n﹣1)对应的点可能是()A.A点 B.B点 C.C点 D.D点二、填空题(每题4分,共24分)13.分解因式结果是______.14.若a=-0.22,b=-2-2,c=(-)-2,d=(-)0,将a,b,c,d按从大到小的顺序用“>”连接起来:__________.15.已知,则=________.16.如图,在等腰中,,,平分交于,于,若,则的周长等于_______;17.分解因式:x3﹣2x2+x=______.18.如图,△ABC≌△ADE,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC的度数为______.三、解答题(共78分)19.(8分)知识链接:将两个含角的全等三角尺放在一起,让两个角合在一起成,经过拼凑、观察、思考,探究出结论“直角三角形中,角所对的直角边等于斜边的一半”.如图,等边三角形的边长为,点从点出发沿向运动,点从出发沿的延长线向右运动,已知点都以每秒的速度同时开始运动,运动过程中与相交于点,设运动时间为秒.请直接写出长.(用的代数式表示)当为直角三角形时,运动时间为几秒?.求证:在运动过程中,点始终为线段的中点.20.(8分)先化简,再从中选一个使原式有意义的数代入并求值;21.(8分)一次函数y1=﹣2x+b的图象交x轴于点A、与正比例函数y2=2x的图象交于点M(m,m+2),(1)求点M坐标;(2)求b值;(3)点O为坐标原点,试确定△AOM的形状,并说明你的理由.22.(10分)如图①是一个长为,宽为的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.(1)若,.求图②中阴影部分面积;(2)观察图②,写出,,三个代数式之间的等量关系.(简要写出推理过程)(3)根据(2)题的等量关系,完成下列问题:若,,求的值.23.(10分)在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.(1)求m,n的值;(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.24.(10分)如图,、、三点在同一条直线上,,,.(1)求证:;(2)若,求的度数.25.(12分)如图,是等边三角形,点是的中点,,过点作,垂足为,的反向延长线交于点.(1)求证:;(2)求证:垂直平分.26.已知:如图,AB=AC,AD=AE,∠1=∠1.求证:△ABD≌△ACE.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【详解】解:A、a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,而(3x)2+(4x)2=(5x)2,故为直角三角形;B、,所以设a=x,b=2x,c=x,而符合勾股定理的逆定理,故为直角三角形;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、因为,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.故选:D【点睛】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.2、B【分析】根据无理数的定义进行判断即可.【详解】根据无理数的定义:无理数是无限不循环小数,不能表示为两个整数的比.由此可得,中,是无理数故答案为:B.【点睛】本题主要考查了无理数的基本概念,掌握无理数的性质以及判断方法是解题的关键.3、D【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:∵|m-2|+=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=1.故选D.【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.4、C【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C5、D【分析】根据垂直平分线的性质定理的逆定理即可做出选择.【详解】∵到一条线段两端点的距离相等的点在这条线段的垂直平分线上,∴到三角形三个顶点距离相等的点是三边的垂直平分线的交点,故选:D.【点睛】本题考查了线段垂直平分线,理解线段垂直平分线的性质的逆定理是解答的关键.6、C【分析】分别根据中位数和方差的定义求出a、b,然后即可求出答案.【详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为×(92+94+98+91+95)=94,其方差为×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6,所以a+b=94+6=100,故选C.【点睛】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键.7、B【解析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.【详解】如图,满足条件的所有点P的个数为1.故选B.【点睛】本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.8、D【解析】根据轴对称图形的概念判断即可.【详解】鹏、程、万都不是轴对称图形,里是轴对称图形,故选D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.9、C【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.【详解】解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即,乙图中阴影部分长方形的长为,宽为,阴影部分的面积为,根据两个图形中阴影部分的面积相等可得.故选:C.【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键.10、D【解析】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11、B【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A、符合AAS,能判断两个三角形全等,故该选项不符合题意;B、符合SSA,∠BAD和∠ABC不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C、符合AAS,能判断两个三角形全等,故该选项不符合题意;D、符合SSS,能判断两个三角形全等,故该选项不符合题意;故选择:B.【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.12、C【分析】根据坐标的平移方法进行分析判断即可.【详解】(m+1)﹣m=1,n﹣(n﹣1)=1,则点E(m,n)到(m+1,n﹣1)横坐标向右移动1单位,纵坐标向下移动1个单位,故选C.【点睛】本题考查了坐标的平移,正确分析出平移的方向以及平移的距离是解题的关键.二、填空题(每题4分,共24分)13、【分析】首先提取公因式,然后利用平方差公式即可得解.【详解】故答案为:.【点睛】此题主要考查分解因式的运用,熟练掌握,即可解题.14、c>d>a>b【解析】根据实数的乘方法则分别计算比较大小即可。【详解】∵a=-0.22=-0.04;b=-2-2=-=-=-0.25,c=(-)-2=4,d=(-)0=1,∴c>d>a>b.故本题答案应为:c>d>a>b.【点睛】本题的考点是实数的乘方及实数的大小比较,计算出每一个实数的乘方是解题的关键。15、【分析】根据幂的乘方与积的乘方运算法则解答即可.【详解】∵,,∴;故答案为:.【点睛】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数的幂相除,底数不变,指数相减.16、1【解析】试题解析:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.17、x(x-1)2.【解析】由题意得,x3﹣2x2+x=x(x﹣1)218、60°【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.【点睛】本题考查全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.三、解答题(共78分)19、(1)AD=4-0.5x;(2)秒;(3)见解析【分析】(1)根据题意得到CD=0.5x,结合图形求出AD;
(2)设x秒时,△ADE为直角三角形,则BE=0.5x,AD=4-0.5x,AE=4+0.5x,根据30°的直角边等于斜边的一般建立方程求出其解即可;
(3)作DG∥AB交BC于点G,证明△DGP≌△EBP,得出PD=PE即可.【详解】解:(1)由题意得,CD=0.5x,
则AD=4-0.5x;
(2)∵△ABC是等边三角形,
∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.
设x秒时,△ADE为直角三角形,
∴∠ADE=90°,BE=0.5x,AD=4-0.5x,AE=4+0.5x,
∴∠AED=30°,
∴AE=2AD,
∴4+0.5x=2(4-0.5x),
∴x=;
答:运动秒后,△ADE为直角三角形;
(3)如图2,作DG∥AB交BC于点G,
∴∠GDP=∠BEP,∠DGP=∠EBP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,
∴∠C=∠CDG=∠CGD,
∴△CDG是等边三角形,
∴DG=DC,
∵DC=BE,
∴DG=BE.
在△DGP和△EBP中,,
∴△DGP≌△EBP(ASA),
∴DP=PE,
∴在运动过程中,点P始终为线段DE的中点.【点睛】本题考查等边三角形的判定与性质,直角三角形的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,掌握全等三角形的判定定理和性质定理,等边三角形的判定定理和性质定理是解题的关键.20、,1.【分析】先将括号里的通分,再利用分式的除法法则计算,使原式有意义的数即这个数不能使分式的分母为0,据此选择即可.【详解】解:原式为使原式有意义所以取,则【点睛】本题考查了分式的混合运算,熟练掌握分式的通分和约分是进行分式加减乘除运算的关键.21、(1)M坐标(2,4);(2)b=8;(3)△AOM是等腰三角形,理由见解析【分析】(1)把点M的坐标代入正比例函数关系式可得关于m的方程,解方程即可求出m,进而可得答案;(2)把(1)题中求得的点M坐标代入一次函数的关系式即可求得结果;(3)易求点A的坐标,然后可根据两点间的距离公式和勾股定理依次求出OA,AM,OM的长,进而可得结论.【详解】解:(1)把点M(m,m+2)代入y2=2x得:m+2=2m,解得:m=2,∴点M坐标(2,4);(2)把点M坐标(2,4)代入y1=﹣2x+b中,得:4=﹣2×2+b,解得:b=8;(3)△AOM是等腰三角形.理由:如图,由(2)知,b=8,∴y1=﹣2x+8,令y=0,则x=4,∴A(4,0),∴OA=4,AM=,OM=,∴OM=AM,∴△AOM是等腰三角形.【点睛】本题考查了一次函数图象上点的坐标特征、直线与坐标轴的交点、两点间的距离公式和勾股定理等知识,属于常考题型,熟练掌握以上基本知识是解题的关键.22、(1);(2)或,过程见解析;(3)【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可求解;(2)根据完全平方公式的变形即可得到关系式;(3)根据,故求出,代入(2)中的公式即可求解.【详解】解:(1)∵阴影正方形的边长为小长方形的长与宽的差,即阴影正方形的边长为13-3=10∴;(2)结论:或∵,∴∴或;(3)∵,∴∴由(2)可知∴∵,∴.【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.23、(1)m=1,n=1;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR=;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.【详解】解:(1)∵,又∵≥0,|1﹣m|≥0,∴n﹣1=0,1﹣m=0,∴m=1,n=1.(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=41°,∴∠QCN+∠OCP=90°﹣41°=41°,∴∠ECP=∠ECO+∠OCP=41°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ.②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=,∵∠SDG=131°,∴∠SDH=180°﹣131°=41°,∴∠FCE=∠SDH=41°,∴∠NCE+∠OCF=41°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=41°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF(SAS),∴E′F=EF在Rt△COF中,OC=1,FC=,由勾股定理得:OF==,∴FM=1﹣=,设EN=x,则EM=1﹣x,FE=E′F=x+,则(x+)2=()2+(1﹣x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年镇江资格证模拟考试
- 公司合作养猪合同范本
- 冷镦模具合同范本
- 冰箱售后服务合同范本
- 农村水田改造合同范本
- 代理交易合同范本
- 兄妹赠予房产合同范本
- 北京出租车司机合同范本
- 农村承包经营户合同范本
- 临时店面员工合同范本
- DB11 938-2022 绿色建筑设计标准
- 部编版语文八年级下册第六单元名著导读《钢铁是怎样炼成的》问答题 (含答案)
- 2022译林版新教材高一英语必修二单词表及默写表
- 全国青少年机器人技术等级考试:二级培训全套课件
- 九种中医体质辨识概述课件
- (外研版)英语四年级下册配套同步练习 (全书完整版)
- 小学数学计算能力大赛实施方案
- 古诗词诵读《虞美人》课件-统编版高中语文必修上册
- 文物学概论-中国古代青铜器(上)
- 制作拉线课件
- 某物业公司能力素质模型库(参考)
评论
0/150
提交评论