2023届广东省广州市南沙区博海学校九年级数学第一学期期末教学质量检测模拟试题含解析_第1页
2023届广东省广州市南沙区博海学校九年级数学第一学期期末教学质量检测模拟试题含解析_第2页
2023届广东省广州市南沙区博海学校九年级数学第一学期期末教学质量检测模拟试题含解析_第3页
2023届广东省广州市南沙区博海学校九年级数学第一学期期末教学质量检测模拟试题含解析_第4页
2023届广东省广州市南沙区博海学校九年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将函数的图象向左平移个单位,再向下平移个单位,可得到的抛物线是:()A. B. C. D.2.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4 B.2 C. D.3.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形4.如图,抛物线y=﹣x2+2x+2交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.下列说法:其中正确判断的序号是()①抛物线与直线y=3有且只有一个交点;②若点M(﹣2,y1),N(1,y2),P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1;④在x轴上找一点D,使AD+BD的和最小,则最小值为.A.①②④ B.①②③ C.①③④ D.②③④5.一个袋中有黑球个,白球若干,小明从袋中随机一次摸出个球,记下其黑球的数目,再把它们放回,搅匀后重复上述过程次,发现共有黑球个.由此估计袋中的白球个数是()A.40个 B.38个 C.36个 D.34个6.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.107.已知抛物线经过和两点,则n的值为()A.﹣2 B.﹣4 C.2 D.48.关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为()A.1 B.2 C.3 D.79.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到颜色相同的球的概率为()A. B. C. D.10.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18二、填空题(每小题3分,共24分)11.方程x2=4的解是_____.12.若(m-1)+2mx-1=0是关于x的一元二次方程,则m的值是______.13.反比例函数的图象经过点,,点是轴上一动点.当的值最小时,点的坐标是__________.14.二次函数y=2x2﹣5kx﹣3的图象经过点M(﹣2,10),则k=_____.15.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为.17.如图,一下水管横截面为圆形,直径为,下雨前水面宽为,一场大雨过后,水面上升了,则水面宽为__________.18.如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、(k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.三、解答题(共66分)19.(10分)如图,已知二次函数的顶点为(2,),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.20.(6分)二次函数的部分图象如图所示,其中图象与轴交于点,与轴交于点,且经过点.求此二次函数的解析式;将此二次函数的解析式写成的形式,并直接写出顶点坐标以及它与轴的另一个交点的坐标.利用以上信息解答下列问题:若关于的一元二次方程(为实数)在的范围内有解,则的取值范围是________.21.(6分)计算:(1);(2).22.(8分)如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BD=BC,将△AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设△AOB与△BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0<t≤2,2<t≤m,m<t<n时函数解析式不同).(1)点B的坐标为,点D的坐标为;(2)求S与t的函数解析式,并写出t的取值范围.23.(8分)如图,在矩形ABCD中,AB=6,AD=3,点E是边CD的中点,点P,Q分别是射线DC与射线EB上的动点,连结PQ,AP,BP,设DP=t,EQ=2t.(1)当点P在线段DE上(不包括端点)时.①求证:AP=PQ;②当AP平分∠DPB时,求△PBQ的面积.(2)在点P,Q的运动过程中,是否存在这样的t,使得△PBQ为等腰三角形?若存在,请求出t的值;若不存在,试说明理由.24.(8分)如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C重合),连接BE.已知AB=3cm,BC=4cm.设A、E两点间的距离为xcm,BE的长度为ycm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为cm.(结果保留一位小数)25.(10分)如图,△ABC的顶点都在方格线的交点(格点)上.(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′;(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″;(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是.26.(10分)网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据“左加右减”的原则求出函数y=-1x2的图象向左平移2个单位所得函数的解析式,再根据“上加下减”的原则求出所得函数图象向下平移1个单位的函数解析式.【详解】解:由“左加右减”的原则可知,将函数的图象向左平移1个单位所得抛物线的解析式为:y=2(x+1)2;

由“上加下减”的原则可知,将函数y=2(x+1)2的图象向下平移1个单位所得抛物线的解析式为:y=2(x+1)2-1.

故选:C.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.2、C【分析】根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故选C.【点睛】本题考查平行线分线段成比例定理.解题的关键是注意掌握各比例线段的对应关系.3、C【解析】试题分析:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.考点:命题与定理.4、C【分析】根据抛物线的性质和平移,以及一动点到两定点距离之和最小问题的处理方法,对选项进行逐一分析即可.【详解】①抛物线的顶点,则抛物线与直线y=3有且只有一个交点,正确,符合题意;②抛物线x轴的一个交点在2和3之间,则抛物线与x轴的另外一个交点坐标在x=0或x=﹣1之间,则点N是抛物线的顶点为最大,点P在x轴上方,点M在x轴的下放,故y1<y3<y2,故错误,不符合题意;③y=﹣x2+2x+2=﹣(x+1)2+3,将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1,正确,符合题意;④点A关于x轴的对称点,连接A′B交x轴于点D,则点D为所求,距离最小值为BD′==,正确,符合题意;故选:C.【点睛】本题考查抛物线的性质、平移和距离的最值问题,其中一动点到两定点距离之和最小问题比较巧妙,属综合中档题.5、D【分析】同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,根据题中条件求出黑球的频率再近似估计白球数量.【详解】解:设袋中的白球的个数是个,根据题意得:解得故选:D【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6、D【详解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故选D.考点:解直角三角形;7、B【分析】根据和可以确定函数的对称轴,再由对称轴的即可求解;【详解】解:抛物线经过和两点,可知函数的对称轴,,;,将点代入函数解析式,可得;故选B.【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.8、C【解析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0解得b=1.故选C.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9、C【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可【详解】解:两次摸球的所有的可能性树状图如下:

共有4种等可能的结果,其中两次都摸到颜色相同的球结果共有2种,

∴两次都摸到颜色相同的球的概率为.

故选C.【点睛】本题考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.10、C【分析】根据矩形的对角线互相平分且相等可得OA=OB=AC,根据邻补角的定义求出∠AOB,然后判断出△AOB是等边三角形,根据等边三角形的性质可得OA=AB,然后求解即可.【详解】∵矩形ABCD的两条对角线交于点O,∴OA=OB=AC,∵∠AOD=10°,∴∠AOB=180°-∠AOD=180°-10°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=1.故选C.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键.二、填空题(每小题3分,共24分)11、【分析】直接运用开平方法解答即可.【详解】解:∵x2=4∴x==.故答案为.【点睛】本题主要考查了运用开平方法求解一元二次方程,牢记运用开平方法求的平方根而不是算术平方根是解答本题的关键,也是解答本题的易错点.12、-2【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】解:由题意,得m(m+2)-1=2且m-1≠1,解得m=-2,故答案为-2.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.13、【分析】先求出A,B点的坐标,找出点B关于y轴的对称点D,连接AD与y足轴交于点C,用待定系数法可求出直线AD的解析式,进而可求出点C的坐标.【详解】解:如下图,作点点B关于y轴的对称点D,连接AD与y足轴交于点C,∵反比例函数的图象经过点,,∴设直线AD解析式为:y=kx+b,将A,D坐标代入可求出:∴直线AD解析式为:∴点的坐标是:故答案为:.【点睛】本题考查的知识点是利用对称求线段的最小值,解题的关键是根据反比例函数求出各点的坐标.14、.【分析】点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3即可求出k的值.【详解】把点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3得,8+10k﹣3=10,解得,k=,故答案为:.【点睛】本题考查求二次函数解析式的系数,解题的关键是将图象上的点坐标代入函数解析式.15、.【解析】⊙O是△ABC的外接圆,∠BAC=60°,;因为OB、OC是⊙O的半径,所以OB=OC,所以=,在中,若⊙O的半径OC为2,OB=OC=2,在中,BC="2"=【点睛】本题考查圆周角与圆心角、弦心距,要求考生熟悉圆周角与圆心角的关系,会求弦心距和弦长16、.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.17、1【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【详解】解:如图:作OE⊥AB于E,交CD于F,连接OA,OC∵AB=60cm,OE⊥AB,且直径为100cm,∴OA=50cm,AE=∴OE=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=,∴CD=2CF=1cm.故答案为:1.【点睛】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.18、2【解析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2,y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2,y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2.【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x2,y2),∵A、B在反比例函数上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=,∴x1x2=×=2,∴y1=x2,y2=x1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2,故答案为:2.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.三、解答题(共66分)19、(1);(2).【分析】(1)设该二次函数的解析式为,因为顶点(2,-1),可以求出h,k,将A(0,3)代入可以求出a,即可得出二次函数解析式.(2)由(1)求出函数解析式,令y等于0可以求出函数图像与x轴的两个交点为B,C两点,然后利用面积公式,即可求出三角形ABC的面积.【详解】(1)设该二次函数的解析式为∵顶点为(2,)∴又∵图象经过A(0,3)∴即∴该抛物线的解析式为(2)当时,,解得,∴C(3,0)B(1,0)得∴.【点睛】熟练掌握待定系数法求二次函数解析式和三角形的面积公式是本题的解题关键.20、(1)(2),顶点坐标为(2,-9),B(5,0)(3)【解析】(1)直接代入三个坐标点求解解析式;(2)利用配方法即可;(3)关于的一元二次方程的根,就是二次函数与的交点,据此分析t的取值范围.【详解】解:(1)代入A、D、C三点坐标:,解得,故函数解析式为:;(2),故其顶点坐标为(2,-9),当y=0时,,解得x=-1或5,由题意可知B(5,0);(3),故当时,-9≤y<0,故-9≤t<0.【点睛】本题第3问中,要理解t是可以取到-9这个值的,只有x=-1和x=3这两个端点对应的y值是不能取的.21、(1);(2)【分析】(1)先代入特殊角的三角函数值,再按照先算乘方再算乘除后算加减的运算法则计算即可.(2)先代入特殊角的三角函数值,再按照先算乘除后算加减的运算法则计算即可.【详解】解:(1)原式.(2)原式.【点睛】本题考查了有关特殊的三角函数值的混合运算,熟练掌握特殊角的三角函数值是解题的关键.22、(1)(2)当0<t≤2时,S=,当2<t≤5时,S=,当5<t<7时,S=t2﹣14t+1.【分析】(1)由图象可得当t=2时,点O与点B重合,当t=m时,△AOB在△BDC内部,可求点B坐标,过点D作DH⊥BC,可证四边形AOHD是矩形,可得AO=DH,AD=OH,由勾股定理可求BD的长,即可得点D坐标;(2)分三种情况讨论,由相似三角形的性质可求解.【详解】解:(1)由图象可得当t=2时,点O与点B重合,∴OB=1×2=2,∴点B(2,0),如图1,过点D作DH⊥BC,由图象可得当t=m时,△AOB在△BDC内部,∴4=×2×DH,∴DH=4,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,且DH⊥BC,∴∠ADH=∠DHO=90°,且∠AOB=90°,∴四边形AOHD是矩形,∴AO=DH,AD=OH,且AD=BC=BD,∴OH=BD,∵DB2=DH2+BH2,∴DB2=(DB﹣2)2+16,∴DB=5,∴AD=BC=OH=5,∴点D(5,4),故答案为:(2,0),(5,4);(2)∵OH=BD=BC=5,OB=2,∴m=,n==7,当0<t≤2时,如图2,∵S△BCD=BC×DH,∴S△BCD=10∵A'B'∥CD,∴△BB'E∽△BCD,∴=()=,∴S=10×=t2,当2<t≤5,如图3,∵OO'=t,∴BO'=t﹣2,FO'=(t﹣2),∵S=S△BB'E﹣S△BO'F=t2﹣×(t﹣2)2,∴S=﹣t2+t﹣;当5<t<7时,如图4,∵OO'=t,∴O'C=7﹣t,O'N=2(7﹣t),∵S=×O'C×O'N=×2(7﹣t)2,∴S=t2﹣14t+1.【点睛】本题考查二次函数性质,相似三角形的判定及性质定理,根据实际情况要分分段讨论利用相似三角形的性质求解是解题的关键.23、(1)①见解析;②S△PBQ=18﹣93;(2)存在,满足条件的t的值为6﹣13或13或6+13.【解析】(1)①如图1中,过点Q作QF⊥CD于点F,证明Rt△ADP≌Rt△PFQ即可.②如图,过点A作PB的垂线,垂足为H,过点Q作PB的垂线,垂足为G.由Rt△ADP≌Rt△AHP,推出PH=PD=t,AH=AD=1.由Rt△AHP△Rt△PGQ,推出QG=PH=DP=t,在Rt△AHB中,则有12+(6﹣t)2=62,求出t即可解决问题.(2)分三种情形:①如图1﹣1中,若点P在线段DE上,当PQ=QB时.②如图1﹣2中,若点P在线段EC上(如图),当PB=BQ时.③如图1﹣1中,若点P在线段DC延长线上,QP=QB时,分别求解即可.【详解】(1)①证明:如图1中,过点Q作QF⊥CD于点F,∵点E是DC的中点,∴CE=DE=1=CB,又∵∠C=90°,∴∠CEB=∠CBE=45°,∵EQ=2t,DP=t,∴EF=FQ=t.∴FQ=DP,∴PF=PE+EF=PE+DP=DE=1∴PF=AD,∴Rt△ADP≌Rt△PFQ,∴AP=PQ.②如图,过点A作PB的垂线,垂足为H,过点Q作PB的垂线,垂足为G.由AP平分∠DPB,得∠APD=∠APB,易证Rt△ADP≌Rt△AHP,∴PH=PD=t,AH=AD=1.又∠APD=∠PAB,∴∠PAB=∠APB,∴PB=AB=8,易证Rt△AHP△Rt△PGQ,∴QG=PH=DP=t,在Rt△AHB中,则有12+(6﹣t)2=62,解得t=6﹣12,∴S△PBQ=12•PB•QG=12×6×(6﹣12)=18﹣9(1)①如图1﹣1中,若点P在线段DE上,当PQ=QB时,∴AP=PQ=QB=BE﹣EQ=12﹣2t,在Rt△APD中,由DP2+AD2=AP2,得t2+9=2(1﹣t)2,解得t=6﹣12或6+12(舍去)②如图1﹣2中,若点P在线段EC上(如图),当PB=BQ时,∴PB=B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论