湖北省枣阳市太平三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第1页
湖北省枣阳市太平三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第2页
湖北省枣阳市太平三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第3页
湖北省枣阳市太平三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第4页
湖北省枣阳市太平三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,小江同学把三角尺含有角的一端以不同的方向穿入进另一把三角尺(含有角)的孔洞中,已知孔洞的最长边为,则三角尺穿过孔洞部分的最大面积为()A. B. C. D.2.已知x2-2x=8,则3x2-6x-18的值为(

)A.54

B.6

C.-10

D.-183.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A.0.5 B.1.5 C. D.14.如图,在Rt△ABC中,∠ACB=90°,AC=,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A. B. C. D.5.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A.内部 B.外部 C.圆上 D.不能确定6.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25° B.20° C.15° D.30°7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定8.小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是A. B. C. D.9.抛物线y=2x2+3与两坐标轴的公共点个数为()A.0个 B.1个 C.2个 D.3个10.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°二、填空题(每小题3分,共24分)11.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+1c>0;④若点A(﹣3,y1)、点B(,y1)、点C(,y3)在该函数图象上,则y1<y3<y1;⑤若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有_______个.12.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是_____cm.13.已知二次函数(a是常数,a≠0),当自变量x分别取-6、-4时,对应的函数值分别为y1、y2,那么y1、y2的大小关系是:y1__y2(填“>”、“<”或“=”).14.若式子在实数范围内有意义,则的取值范围是________.15.如图,Rt△ABC中,∠C=90°,AC=30cm,BC=40cm,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm.16.已知点A(m,1)与点B(3,n)关于原点对称,则m+n=_________。17.若,则锐角α=_____.18.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.三、解答题(共66分)19.(10分)如图,已知E是四边形ABCD的对角线BD上一点,且,.求证:.20.(6分)已知布袋中有红、黄、蓝色小球各一个,用画树状图或列表的方法求下列事件的概率.(1)如果摸出第一个球后,不放回,再摸出第二球,求摸出的球颜色是“一黄一蓝”的概率.(2)随机从中摸出一个小球,记录下球的颜色后,把球放回,然后再摸出一个球,记录下球的颜色,求得到的球颜色是“一黄一蓝”的概率.21.(6分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?22.(8分)如图,已知是的一条弦,请用尺规作图法找出的中点.(保留作图痕迹,不写作法)23.(8分)元旦期间,九年级某班六位同学进行跳圈游戏,具体过程如下:图1所示是一枚质地均匀的正方体骰子,骰子的六个面上的点数分别是1,1,3,4.5,6,如图1,正六边形ABCDEF的顶点处各有一个圈.跳圈游戏的规则为:游戏者每投掷一次骰子,假骰子向上的一面上的点数是几,就沿着正六边形的边逆时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就逆时针连续跳3个边长,落到圈D;若第二次掷得1.就从图D开始逆时针连续起跳1个边长,落到圈F…,设游戏者从圈A起跳(1)小明随机掷一次骰子,求落回到圈A的概率P1;(1)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈A的概率P1.24.(8分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.25.(10分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.26.(10分)如图,在中,点,分别在,上,,,.求四边形的面积.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为∴S==故选B.【点睛】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.2、B【解析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【详解】∵x2−2x=8,∴3x2−1x−18=3(x2−2x)−18=24−18=1.故选:B.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3、D【解析】利用∠B的正弦值和正切值可求出BC、AB的长,根据旋转的性质可得AD=AB,可证明△ADB为等边三角形,即可求出BD的长,根据CD=BC-BD即可得答案.【详解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵绕点A按顺时针方向旋转一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.4、A【详解】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=,∴BC=AC•tan30°==2,∴S阴影=S△ABC﹣S扇形CBD==.故选A.【点睛】本题考查解直角三角形和扇形面积的计算,掌握公式正确计算是本题的解题关键.5、B【解析】平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O外;d=r点P在⊙O上;d<r点P在⊙O内.【详解】∵⊙O的半径为3cm,点P到圆心O的距离为4cm,4cm>3cm,∴点P在圆外.故选:B.【点睛】本题考查平面上的点距离圆心的位置关系的问题.6、A【分析】根据圆周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等边对等角即可求解答.【详解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案为A.【点睛】本题考查了圆周角定理和平行线的性质,灵活应用所学定理以及数形结合思想的应用都是解答本题的关键.7、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.8、C【详解】∵10张卡片的数中能被4整除的数有:4、8,共2个,∴从中任意摸一张,那么恰好能被4整除的概率是故选C9、B【分析】根据一元二次方程2x2+3=1的根的判别式的符号来判定抛物线y=2x2+3与x轴的交点个数,当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点.【详解】解:当y=1时,2x2+3=1.

∵△=12-4×2×3=-24<1,

∴一元二次方程2x2+3=1没有实数根,即抛物线y=2x2+3与x轴没有交点;

当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点,

∴抛物线y=2x2+3与两坐标轴的交点个数为1个.

故选B.【点睛】本题考查了抛物线与x轴、y轴的交点.注意,本题求得是“抛物线y=2x2+3与两坐标轴的交点个数”,而非“抛物线y=2x2+3与x轴交点的个数”.10、D【解析】解:∵B是弧AC的中点,∴∠AOB=2∠BDC=80°.又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.点睛:本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.二、填空题(每小题3分,共24分)11、2【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】①由对称轴可知:x=−=1,∴4a+b=0,故①正确;②由图可知:x=−2时,y<0,∴9a−2b+c<0,即9a+c<2b,故②错误;③令x=−1,y=0,∴a−b+c=0,∵b=−4a,∴c=−5a,∴8a+7b+1c=8a−18a−10a=−20a由开口可知:a<0,∴8a+7b+1c=−20a>0,故③正确;④点A(﹣2,y1)、点B(,y1)、点C(,y2)在该函数图象上,由抛物线的对称性可知:点C关于直线x=1的对称点为(,y2),∵−2<<,∴y1<y1<y2故④错误;⑤由题意可知:(−1,0)关于直线x=1的对称点为(5,0),∴二次函数y=ax1+bx+c=a(x+1)(x−5),令y=−2,∴直线y=−2与抛物线y=a(x+1)(x−5)的交点的横坐标分别为x1,x1,∴x1<−l<5<x1故⑤正确;故正确的结论有2个答案为:2.【点睛】本题考查二次函数的图象,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.12、1【解析】利用底面周长=展开图的弧长可得.【详解】解:设这个扇形铁皮的半径为rcm,由题意得=π×80,解得r=1.故这个扇形铁皮的半径为1cm,故答案为1.【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.13、>【分析】先求出抛物线的对称轴为,由,则当,y随x的增大而减小,即可判断两个函数值的大小.【详解】解:∵二次函数(a是常数,a≠0),∴抛物线的对称轴为:,∵,∴当,y随x的增大而减小,∵,∴;故答案为:.【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质进行解题.14、且【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得x-1≥0且x-2≠0,解得且故答案为:且【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.15、1.【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB==50cm,设半径OD=rcm,∴S△ACB==,∴30×40=30r+40r+50r,∴r=1,则该圆半径是1cm.故答案为:1.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.16、-1【分析】根据两个点关于原点对称时,它们的坐标符号相反,可直接得到m=-3,n=-1进而得到答案.【详解】解:∵点A(m,1)与点B(3,n)关于原点对称,

∴m=-3,n=-1,

∴m+n=-1,

故答案为:-1.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.17、45°【分析】首先求得cosα的值,即可求得锐角α的度数.【详解】解:∵,∴cosα=,∴α=45°.故答案是:45°.【点睛】本题考查了特殊的三角函数值,属于简单题,熟悉三角函数的概念是解题关键.18、.【解析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【详解】解:如图,过点作于点,过点作于点,∵,,∴,∵在中,,∴,在与中,∵,∴,∴,∵,∵,∴,∴∽,∴,∴,∴,,∴,在中,,在中,,∴,,在中,,在中,,∵,∴∽,∴,故答案为:.【点睛】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.三、解答题(共66分)19、证明见解析【分析】根据两边对应成比例且其夹角相等的两三角形相似得到△ABC∽△AED,根据相似三角形的对应角相等即可证得结论.【详解】证明:∵∴,即.又∵,∴∴.∴.【点睛】此题考查相似三角形的判定与性质,解题关键在于判定△ABE∽△ACD.20、(1);(2)【分析】运用画树状图或列表的方法列举出符合题意的各种情况的个数,再根据概率公式:概率=所求情况数与总情况数之比解答即可.【详解】解:(1)画树状图如图所示.共有6种等可能的情况,其中摸到的球是“一黄一蓝”的情况有2种,因此球颜色是“一黄一蓝”的概率为.(2)画树状图如图所示.共有9种等可能的情况,其中摸到的球是“一黄一蓝”的情况有2种,因此球颜色是“一黄一蓝”的概率为.【点睛】本题主要考查的是用画树状图法或列表法求概率.着重考查了用画树状图法或列表法列举随机事件出现的所有情况,并求出某事件的概率,应注意认真审题,注意不放回再摸和放回再摸的区别.21、(1)y=﹣2x+200(30≤x≤60);(2)当销售单价为55元时,销售这种童装每月可获利1800元;(3)当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.【分析】(1)当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.从而用60减去x,再除以10,就是降价几个10元,再乘以20,再把80加上就是平均月销售量;(2)利用(售价﹣进价)乘以平均月销售量,再减去每月需要支付的其他费用,让其等于1800,解方程即可;(3)由(2)方程式左边,可得每月获得的利润函数,写成顶点式,再结合函数的自变量取值范围,可求得取最大利润时的x值及最大利润.【详解】解:(1)由题意得:y=80+20×∴函数的关系式为:y=﹣2x+200(30≤x≤60)(2)由题意得:(x﹣30)(﹣2x+200)﹣450=1800解得x1=55,x2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w元,由题意得:w=(x﹣30)(﹣2x+200)﹣450=﹣2(x﹣65)2+2000∵﹣2<0∴当x≤65时,w随x的增大而增大∵30≤x≤60∴当x=60时,w最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.【点睛】本题综合考查了一次函数、一元二次方程、二次函数在实际问题中的应用,具有较强的综合性.22、见解析【分析】作线段AB的垂直平分线即可得到AB的中点D.【详解】如图,作线段AB的垂直平分线即可得到AB的中点D.【点睛】此题考查作图能力,作线段的垂直平分线,掌握画图方法是解题的关键.23、(1);(1)【分析】(1)直接利用概率公式求解;

(1)先画树状图得到36种等可能的结果,再找出两数的和为6的倍数的结果数,然后根据概率公式求解.【详解】(1)共有6种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(1)画树状图为:∵共有36种等可能的结果,最后落回到圈A的有(1,5),(1,4),(3,3),(4,1),(5,1),(6,6),∴小亮最后落回到圈A的概率P1==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.24、(1)AC=5,AD=5;(2)直线PC与⊙O相切【分析】(1)、连接BD,根据AB为直径,则∠ACB=∠ADB=90°,根据Rt△ABC的勾股定理求出AC的长度,根据CD平分∠ACB得出Rt△ABD是等腰直角三角形,从而得出AD的长度;(2)、连接OC,根据OA=OC得出∠CAO=∠OCA,根据PC=PE得出∠PCE=∠PEC,然后结合CD平分∠ACB得出∠ACE=∠ECB,从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论