




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.把多项式分解因式,结果正确的是()A. B.C. D.2.下列说法:①三点确定一个圆;②任何三角形有且只有一个内切圆;③相等的圆心角所对的弧相等;④正多边形一定是中心对称图形,其中真命题有()A.1个 B.2个 C.3个 D.4个3.下列计算中,结果是的是A. B. C. D.4.一元二次方程x2-x=0的根是()A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-15.已知抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),C(-5,y1),D(5,y2)四点,则y1与y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定6.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25° B.5tan65° C.5cos25° D.5tan25°7.如图,抛物线的对称轴为,且过点,有下列结论:①>0;②>0;③;④>0.其中正确的结论是()A.①③ B.①④ C.①② D.②④8.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再先向上平移1个单位B.先向左平移2个单位,再先向下平移1个单位C.先向右平移2个单位,再先向上平移1个单位D.先向右平移2个单位,再先向下平移1个单位9.下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.2a6÷a3=2a3 D.a2•a4=a810.对于二次函数y=-x2+2x-3,下列说法正确的是()A.当x>0,y随x的增大而减少 B.当x=2时,y有最大值-1C.图像的顶点坐标为(2,-5) D.图像与x轴有两个交点11.下列各坐标表示的点在反比例函数图象上的是()A. B. C. D.12.已知,是关于的一元二次方程的两个不相等的实数根,且满足,则的值是()A.3 B.1 C.3或 D.或1二、填空题(每题4分,共24分)13.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)14.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.15.如图,为测量某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=10m,EC=5m,CD=8m,则河的宽度AB长为______________m.16.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是____.17.一元二次方程的两个实数根为,则=_____.18.如图,已知点A在反比例函数图象上,AC⊥y轴于点C,点B在x轴的负半轴上,且△ABC的面积为3,则该反比例函数的表达式为__.三、解答题(共78分)19.(8分)已知关于x的方程(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k的取值范围20.(8分)某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值为;(2)该班学生中考体育成绩的中位数落在组;(在A、B、C、D、E中选出正确答案填在横线上)(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.21.(8分)已知:关于x的方程(1)求证:m取任何值时,方程总有实根.(2)若二次函数的图像关于y轴对称.a、求二次函数的解析式b、已知一次函数,证明:在实数范围内,对于同一x值,这两个函数所对应的函数值均成立.(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.22.(10分)问题提出(1)如图①,在中,,求的面积.问题探究(2)如图②,半圆的直径,是半圆的中点,点在上,且,点是上的动点,试求的最小值.问题解决(3)如图③,扇形的半径为在选点,在边上选点,在边上选点,求的长度的最小值.23.(10分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.24.(10分)从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t﹣5t2,那么小球抛出秒后达到最高点.25.(12分)尺规作图:已知△ABC,如图.(1)求作:△ABC的外接圆⊙O;(2)若AC=4,∠B=30°,则△ABC的外接圆⊙O的半径为.26.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.
参考答案一、选择题(每题4分,共48分)1、B【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:;完全平方公式:;【详解】解:,故选B.【点睛】本题考查了分解因式,熟练运用平方差公式是解题的关键2、A【分析】根据圆的性质、三角形内切圆的性质、圆心角的性质以及中心对称图形的知识,依次分析可得出正确的命题,即可得出答案.【详解】①不共线的三点确定一个圆,错误,假命题;②任何三角形有且只有一个内切圆,正确,真命题;③在同一个圆中,圆心角相等所对的弧也相等,错误,假命题;④正五边形、正三角形都不是中心对称图形,错误,假命题;故答案为A.【点睛】本题考查了圆的性质、三角形内切圆的性质、圆心角的性质以及中心对称图形的知识,解题时记牢性质和判定方法是关键.3、D【解析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A、a2+a4≠a6,不符合;B、a2•a3=a5,不符合;C、a12÷a2=a10,不符合;D、(a2)3=a6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错.4、C【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.5、A【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(-5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案.【详解】∵抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),∴抛物线的对称轴是:直线x=-1,且开口向下,∵C(-5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,∴y1>y2,故选A.【点睛】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键.6、C【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【详解】在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形及其应用是解题的关键.7、C【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a<0,
根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,
根据抛物线与y轴的交点在正半轴可得:c>0,
∴abc>0,故①正确;
直线x=-1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以-=-1,可得b=2a,
a-2b+4c=a-4a+4c=-3a+4c,
∵a<0,
∴-3a>0,
∴-3a+4c>0,
即a-2b+4c>0,故②正确;
∵b=2a,a+b+c<0,
∴2a+b≠0,故③错误;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④错误;
故选:C.【点睛】此题考查二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.8、B【解析】试题分析:因为函数y=x2的图象沿y轴向下平移1个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加1可得新函数y=x2﹣1;然后再沿x轴向左平移2个单位长度,可得新函数y=(x+2)2﹣1.解:∵函数y=x2的图象沿沿x轴向左平移2个单位长度,得,y=(x+2)2;然后y轴向下平移1个单位长度,得,y=(x+2)2﹣1;故可以得到函数y=(x+2)2﹣1的图象.故选B.考点:二次函数图象与几何变换.9、C【分析】分别对选项的式子进行运算得到:2a+5b不能合并同类项,(﹣ab)2=a2b2,a2•a4=a6即可求解.【详解】解:2a+5b不能合并同类项,故A不正确;(﹣ab)2=a2b2,故B不正确;2a6÷a3=2a3,正确a2•a4=a6,故D不正确;故选:C.【点睛】本题考查了幂的运算,解题的关键是掌握幂的运算法则.10、B【分析】根据题目中函数解析式和二次函数的性质,可以逐一判断各选项即可.【详解】∵二次函数y=-x2+2x-3的图象开口向下,且以为对称轴的抛物线,A.当x>2,y随x的增大而减少,该选项错误;B.当x=2时,y有最大值-1,该选项正确;C.图像的顶点坐标为(2,-1),该选项错误;D.图像与x轴没有交点,该选项错误;故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值和顶点,关键是明确题意,利用二次函数的性质作答.11、B【解析】根据反比例函数的性质,分别代入A、B、C、D点,横坐标与纵坐标的积为4即可.【详解】A、(-1)×4=-4,故错误.B、1×4=4,故正确.C、1×-4=-4,故错误.D、2×(-2)=-4,故错误.故选B.【点睛】本题考查反比例函数图像上点的坐标特征.12、A【分析】根据一元二次方程根与系数的关系,计算出、再代入分式计算,即可求得.【详解】解:由根与系数的关系得:,,∴即,解得:或,而当时,原方程△,无实数根,不符合题意,应舍去,∴的值为1.故选A.【点睛】本题考查一元二次方程中根与系数的关系应用,难度不大,求得结果后需进行检验是顺利解题的关键.二、填空题(每题4分,共24分)13、∠B=∠1或【解析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.14、1【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x1是关于x的方程x1+3x-5=0的两个根,
根据根与系数的关系,得,x1+x1=-3,x1x1=-5,
则x1+x1-x1x1=-3-(-5)=1,
故答案为1.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x1=-3,x1x1=-5是解题的关键.15、16【分析】先证明,然后再根据相似三角形的性质求解即可.【详解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本题答案为:16.【点睛】本题考查了相似三角形的应用,准确识图,熟练掌握和灵活运用相似三角形的判定定理与性质定理是解题的关键.16、.【分析】用列表法或画树状图法分析所有等可能的结果,然后根据概率公式求出该事件的概率.【详解】解:画树状图如下:
∵一共有6种情况,两个球都是白球有2种,
∴P(两个球都是白球),
故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17、1【分析】直接根据一元二次方程根与系数的关系进行求解即可.【详解】的两个实数根为,,.故答案为1.【点睛】本题主要考查一元二次方程根与系数的关系,熟记根与系数的关系是解题的关键.18、y=﹣【解析】根据同底等高的两个三角形面积相等,可得△AOC的面积=△ABC的面积=3,再根据反比例函数中k的几何意义,即可确定k的值,进而得出反比例函数的解析式.【详解】解:如图,连接AO,设反比例函数的解析式为y=.∵AC⊥y轴于点C,∴AC∥BO,∴△AOC的面积=△ABC的面积=3,又∵△AOC的面积=|k|,∴|k|=3,∴k=±2;又∵反比例函数的图象的一支位于第二象限,∴k<1.∴k=﹣2.∴这个反比例函数的解析式为y=﹣.故答案为y=﹣.【点睛】本题考查待定系数法求反比例函数的解析式和反比例函数中k的几何意义.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.三、解答题(共78分)19、(1)证明见解析;(2)【分析】(1)证出根的判别式即可完成;(2)将k视为数,求出方程的两个根,即可求出k的取值范围.【详解】(1)证明:∴方程总有两个实数根(2)∴∴∵方程有一个小于1的正根∴∴【点睛】本题考查一元二次方程根的判别式与方程的根之间的关系,熟练掌握相关知识点是解题关键.20、(1)18;(2)D组;(3)图表见解析,【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案为:18;(2)∵全班学生人数有50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段,∴落在D段故答案为:D;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6种等情况数,∴恰好选到一男一女的概率是==.【点睛】此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键.21、(1)证明见解析;(2)a、y1=x2-1;b、证明见解析;(3).【解析】(1)首先此题的方程并没有明确是一次方程还是二次方程,所以要分类讨论:①m=0,此时方程为一元一次方程,经计算可知一定有实数根;②m≠0,此时方程为二元一次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明.(2)①由于抛物线的图象关于y轴对称,那么抛物线的一次项系数必为0,可据此求出m的值,从而确定函数的解析式;②此题可用作差法求解,令y1-y2,然后综合运用完全平方式和非负数的性质进行证明.(3)根据②的结论,易知y1、y2的交点为(1,0),由于y1≥y3≥y2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a表示出y3的函数解析式;已知y3≥y2,可用作差法求解,令y=y3-y2,可得到y的表达式,由于y3≥y2,所以y≥0,可据此求出a的值,即可得到抛物线的解析式.【详解】解:(1)分两种情况:当m=0时,原方程可化为3x-3=0,即x=1;∴m=0时,原方程有实数根;当m≠0时,原方程为关于x的一元二次方程,∵△=[-3(m-1)]2-4m(2m-3)=m2-6m+9=(m-3)2≥0,∴方程有两个实数根;综上可知:m取任何实数时,方程总有实数根;(2)①∵关于x的二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;∴3(m-1)=0,即m=1;∴抛物线的解析式为:y1=x2-1;②∵y1-y2=x2-1-(2x-2)=(x-1)2≥0,∴y1≥y2(当且仅当x=1时,等号成立);(3)由②知,当x=1时,y1=y2=0,即y1、y2的图象都经过(1,0);∵对应x的同一个值,y1≥y3≥y2成立,∴y3=ax2+bx+c的图象必经过(1,0),又∵y3=ax2+bx+c经过(-5,0),∴y3=a(x-1)(x+5)=ax2+4ax-5a;设y=y3-y2=ax2+4ax-5a-(2x-2)=ax2+(4a-2)x+(2-5a);对于x的同一个值,这三个函数对应的函数值y1≥y3≥y2成立,∴y3-y2≥0,∴y=ax2+(4a-2)x+(2-5a)≥0;根据y1、y2的图象知:a>0,∴y最小=≥0∴(4a-2)2-4a(2-5a)≤0,∴(3a-1)2≤0,而(3a-1)2≥0,只有3a-1=0,解得a=,∴抛物线的解析式为:【点睛】本题考查二次函数与一元二次方程的关系、根的判别式、完全平方公式、非负数的性质以及用待定系数法确定函数解析式的方法,难度较大,22、(1)12;(2);(3).【分析】(1)如图1中,过点作,交延长线于点,通过构造直角三角形,求出BD利用三角形面积公式求解即可.(2)如图示,作点关于的对称点,交于点,连接,交于点,连接、、,过点作,交延长线于点,确定点P的位置,利用勾股定理与矩形的性质求出CQ的长度即为答案.(3)解图3所示,在上这一点作点关于的对称点,作点关于的对称点,连接,交于点,交于点,连接,通过轴对称性质的转化,最终确定最小值转化为SN的长.【详解】(1)如解图1所示,过点作,交延长线于点,,,,交延长线于点,为等腰直角三角形,且,,在中,,,即,,,解得:,,.(2)如解图2所示,作点关于的对称点,交于点,连接,交于点,连接、、,过点作,交延长线于点,关于的对称点,交于点,,,点为上的动点,,当点处于解图2中的位置,取最小值,且最小值为的长度,点为半圆的中点,,,,,,在中,由作图知,,且,,,由作图知,四边形为矩形,,,,的最小值为.(3)如解图3所示,在上这一点作点关于的对称点,作点关于的对称点,连接,交于点,交于点,连接,点关于的对称点,点关于的对称点,连接,交于点,交于点,,,,,.,,为上的点,为上的点,当点处于解图3的位置时,的长度取最小值,最小值为的长度,,,.扇形的半径为,,在中,,的长度的最小值为.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.23、(1)证明见解析;(2)①30°;②22.5°.【解析】分析:(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.详解:(1)证明:连接OC,如图,.∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°-67.5°-67.5°=45°,∴∠A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盆腔炎中医治疗课件
- 高效时间管理讲座
- 术后恢复期关键护理措施
- 中心静脉导管护理与感染预防
- 新生儿脐部护理的留置与维护
- 2025年警察校园安保职业资格考试试卷及答案
- 病毒防疫知识课件
- 巴比伦空中花园介绍
- 工程项目融资课件
- 疫情防疫知识课件
- 车辆伤害事故桌面功能演练方案、脚本
- 老旧厂房改造-洞察及研究
- 民政局财务管理制度
- 2025超市员工劳动合同模板
- 2024-2025学年人教版数学五年级下学期期末试卷(含答案)
- 提前解约赔偿协议书
- 2025-2030年中国变压器套管行业市场现状供需分析及投资评估规划分析研究报告
- 微风发电项目可行报告
- 装修退款协议书模板
- 2025年重点高中中考自主招生考试物理试卷试题(含答案详解)
- 防腐木交易合同协议
评论
0/150
提交评论