版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A. B. C.4 D.62.已知二次函数的图象与轴有两个不同的交点,其横坐标分别为若且则()A. B. C. D.3.若点关于原点对称点的坐标是,则的值为()A. B. C. D.4.已知点,,是抛物线上的三点,则a,b,c的大小关系为()A. B. C. D.5.点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是()A. B. C. D.6.如图,将Rt△ABC绕直角顶点C顺时针旋转90°得到△DEC,连接AD,若∠BAC=26°,则∠ADE的度数为()A.13° B.19° C.26° D.29°7.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A.(,),(,) B.(,),(,)C.(,),(,) D.(,),(,)8.如图,小江同学把三角尺含有角的一端以不同的方向穿入进另一把三角尺(含有角)的孔洞中,已知孔洞的最长边为,则三角尺穿过孔洞部分的最大面积为()A. B. C. D.9.已知关于的一元二次方程有两个不相等的实数根,则的取值范围为()A. B. C. D.10.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为()A. B. C. D.1二、填空题(每小题3分,共24分)11.连掷两次骰子,它们的点数都是4的概率是__________.12.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD=_____________13.如图,反比例函数的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.14.如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把△CDB绕点C旋转90°,点D的对应点为点D′,则OD′的长为_________.15.若正多边形的每一个内角为,则这个正多边形的边数是__________.16.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.17.如图是反比例函数在第二象限内的图像,若图中的矩形OABC的面积为2,则k=________.18.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.三、解答题(共66分)19.(10分)如图,AB是的直径,点C、D在上,且AD平分,过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.证明EF是的切线;求证:;已知圆的半径,,求GH的长.20.(6分)如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,现有长为米的篱笆,一边靠墙,若墙长米,设花圃的一边为米;面积为平方米.(1)求与的函数关系式及值的取值范围;(2)若边不小于米,这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.21.(6分)如图1,在中,,以为直径的交于点.(1)求证:点是的中点;(2)如图2,过点作于点,求证:是的切线.22.(8分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.23.(8分)如图,在Rt△ABC中,∠C=90°,过AC上一点D作DE⊥AB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE.24.(8分)求值:+2sin30°-tan60°-tan45°25.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.26.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出点C2的坐标;(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【分析】作BD⊥x轴于D,延长BA交y轴于E,然后根据平行四边形的性质和反比例函数系数k的几何意义即可求得答案.【详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据反比例函数系数k的几何意义得,S矩形BDOE=5,S△AOE=,∴平行四边形OABC的面积,故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性2、C【分析】首先根据二次函数开口向下与轴有两个不同的交点,得出,然后再由对称轴即可判定.【详解】由已知,得二次函数开口向下,与轴有两个不同的交点,∴∵且∴其对称轴∴故答案为C.【点睛】此题主要考查二次函数图象的性质,熟练掌握,即可解题.3、A【分析】根据平面内关于原点对称的点,横坐标与纵坐标都互为相反数得出关于,的方程组,解之即可.【详解】解:点,关于原点对称,,解得:.故选:A.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.4、D【分析】将A,B,C三点坐标分别代入抛物线,然后化简计算即可.【详解】解:∵点,,是抛物线上的三点,∴,,.∴故选:D.【点睛】本题考查二次函数图象上点的坐标,将点坐标分别代入关系式,正确运算,求出a,b,c是解题的关键.5、D【解析】试题分析:∵,∴对称轴为x=1,P2(3,),P3(5,)在对称轴的右侧,y随x的增大而减小,∵3<5,∴,根据二次函数图象的对称性可知,P1(﹣1,)与(3,)关于对称轴对称,故,故选D.考点:二次函数图象上点的坐标特征.6、B【分析】根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CDA=45°,根据∠ADE=∠CDA﹣∠CDE,即可求解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故选:B.【点睛】本题主要考查旋转的性质和等腰直角三角形的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键,7、C【分析】如过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、根据△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解决问题.【详解】解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、∵点A坐标(-2,1),点C纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,,∴点C坐标,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,,∴点B坐标,故选C.【点睛】本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.8、B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为∴S==故选B.【点睛】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.9、A【解析】根据根的判别式即可求出k的取值范围.【详解】根据题意有解得故选:A.【点睛】本题主要考查根的判别式,掌握根的判别式与根的个数之间的关系是解题的关键.10、A【分析】根据概率是指某件事发生的可能性为多少解答即可.【详解】解:此事件发生的概率故选A.【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.二、填空题(每小题3分,共24分)11、【分析】首先根据题意列表,然后根据表格求得所有等可能的结果与它们的点数都是4的情况数,再根据概率公式求解即可.【详解】解:列表得:1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∴一共有36种等可能的结果,它们的点数都是4的有1种情况,∴它们的点数都是4的概率是:,故答案为:.【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.12、80°【详解】解:∵AC是⊙O的切线,∴AB⊥AC,∵∠C=50°,∴∠B=90°﹣∠C=40°,∵OA=OB,∴∠ODB=∠B=40°,∴∠AOD=80°.故答案为80°.13、1.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【详解】∵反比例函数的图象经过点D,∴OA•AD=2.
∵D是AB的中点,
∴AB=2AD.
∴矩形的面积=OA•AB=2AD•OA=2×2=1.故答案为1.考点:反比例函数系数k的几何意义.14、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【详解】解:因为点D(4,1)在边AB上,
所以AB=BC=4,BD=4-1=3;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=BD=3,
所以D′(3,0);∴;
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为8,到y轴的距离为3,
所以D′(3,8),∴;
故答案为:3或.【点睛】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.15、八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形的边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.16、1【分析】设小聪答对了x道题,根据“答对题数×5−答错题数×2>80分”列出不等式,解之可得.【详解】设小聪答对了x道题,根据题意,得:5x−2(19−x)>80,解得x>16,∵x为整数,∴x=1,即小聪至少答对了1道题,故答案为:1.【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.17、-1【解析】解:因为反比例函数,且矩形OABC的面积为1,所以|k|=1,即k=±1,又反比例函数的图象在第二象限内,k<0,所以k=﹣1.故答案为﹣1.18、.【分析】根据三角形的面积公式求出BC边上的高=3,根据△ADE∽△ABC,求出正方形DEFG的边长为2,根据等于高之比即可求出MN.【详解】解:作AQ⊥BC于点Q.∵AB=AC=3,∠BAC=90°,∴BC=AB=6,∵AQ⊥BC,∴BQ=QC,∴BC边上的高AQ=BC=3,∵DE=DG=GF=EF=BG=CF,∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=AD=2,∵△AMN∽△AGF,DE边上的高为1,∴MN:GF=1:3,∴MN:2=1:3,∴MN=.故答案为.【点睛】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大,作辅助线AQ⊥BC是解题的关键.三、解答题(共66分)19、(1)详见解析;(1)详见解析;(3).【解析】(1)由题意可证OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切线;(1)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG=90°,根据勾股定理可求GH的长.【详解】解:(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(1)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G是半圆弧中点,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=1.∴GH==.【点睛】本题考查了切线的判定和性质,角平分线的性质,勾股定理,圆周角定理等知识,熟练运用切线的判定和性质解决问题是本题的关键.20、(1);(2)当时,有最大值,最大值是,当时,有最小值,最小值是【分析】(1)根据题意可得S=x(18-3x)=-3x²+18x(2)根据⑴和边不小于米,则4≤x≤5,在此范围内是减函数,代入求值即可.【详解】解:(1),(2),当时,有最大值,最大值是,当时,有最小值,最小值是【点睛】本题考查的是二次函数中的面积问题,注意自变量的取值范围.21、(1)证明见解析;(2)证明见解析.【分析】(1)连结CD,如图,根据圆周角定理得到∠CDB=90°,然后根据等腰三角形的性质易得点D是BC的中点;(2)连结OD,如图,先证明OD为△ABC的中位线,得到OD∥AC,由于DE⊥AC,则DE⊥OD,于是根据切线的判断定理得到DE是⊙O的切线【详解】(1)连接∵是的直径∴∴∴∴∴点是的中点(2)连接∵∴∵∴∴∴∴∵∴∴∴是的切线【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等腰三角形的性质、三角形中位线性质.22、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②PB=PC;③BP=BC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.23、3cm【分析】先根据勾股定理求出BC的长,再根据题意证明△ABC∽△ADE,得到,代入即可求解.【详解】解:∵∠C=90°,AB=10,AC=8∴BC==6∵BE=6∴AE=4∵DE⊥AB∴∠C=90°=∠AED又∠A=∠A∴△ABC∽△ADE∴∴cm.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定方法.24、【解析】先得出式子中的特殊角的三角函数值,再按实数溶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托担保协议合同范例
- 2024年甘肃客运驾驶从业资格考试题库答案
- 2024年安阳客运从业资格证到期换证考试
- 2024年西藏客运从业资格证都考些什么
- 2024年南平c1客运资格证考试
- 2024年六盘水客运从业资格证考试模板
- 医学临床三基(医技)考试题库与答案
- 浙江省台州市玉环市环山小学2023-2024学年六年级上学期数学期中考试试卷
- 股票投资计划书(5篇模版)
- 直线方程的一般式课件
- 施工现场挖断电缆、光缆事故应急抢修方案(纯干货版)
- 石灰石粉仓安装方案
- 标准化大纲-模版
- 松下电器(中国)焊接学校——焊接技术
- 《肺动脉高压护理》PPT课件.ppt
- 青少年特发性脊柱侧弯症中医诊疗方案4
- 河堤工程岩土工程勘察报告
- 完整版水稳自评报告
- 《小儿推拿》PPT课件(完整版)
- 幼儿园区域材料投放明细(修改版)
- 人教版五年级上册《练习十七》数学教案_1
评论
0/150
提交评论