计量经济学模型使用中的常见问题剖析,计量经济学论文_第1页
计量经济学模型使用中的常见问题剖析,计量经济学论文_第2页
计量经济学模型使用中的常见问题剖析,计量经济学论文_第3页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计量经济学模型使用中的常见问题剖析,计量经济学论文内容摘要:建立计量经济建模的目的就是用来模拟现实,以到达经济分析。政策测定。预测与决策。理论的实证与检验等多角度的使用需求。然而在现实的应用中却存在着很多的不恰当使用问题,主要表现为模型不检验。甚至未通过检验就使用的问题。这些不恰当的使用主要是对模型及建模工具的理解偏差等原因造成的。假如不加以重视,不但达不到经济分析的目的,甚至会误导后续的研究,以及错误的决策,还会造成重大的经济损失。本文关键词语:计量经济模型;模型检验;模型应用;协整检验。计量经济模型是对复杂的现实进行抽象和简化的有效工具。其将社会经济活动的主要关系以方程式的形式表示出,让使用者一目了然。同时,这些主要关系往往都是经济社会问题的主要矛盾的反映。所以一个好的模型就应该反映出这些问题产生的因果关系,根据这些因果关系就能够有根据的制定政策和计划方案,提高我们的管理效率。然而在现实的模型使用中,却存在着很多的问题,本文将就模型使用中常见的问题分析如下:一、对模型的理解及其使用偏差。在学生的论文答辩或中期的检查中,经常会碰到为什么不在文章的某处建个模型?或者是我想在某处建个模型该怎么做?甚至某些高校的论文规范中要求论文中都要包含模型才能及格等等问题。产生这类问题的原因,就是对模型一词的理解偏差,即以为模型就是一个方程式,所以在文章的某处参加表示清楚某种关系的方程式就算是建模了。这种错误可能产生的后果就是局部的关系与全局系统能否恰当问题。即局部的关系在全局中能否真的起作用并没有得到实证,甚至是局部关系与全局的关系相矛盾。假如在论文写作的制度规范中要求有模型,则这种制度规范必然会引起学生们对模型理解上的偏差。这种偏差不但会迅速扩大,还会很容易导致大量的形而上学式的分析结果。我们所写的任何一篇学术研究类的论文,都能够看做是一个模型,或者是更大模型中的局部细化。即便你没有使用模型一词,也没有想构建什么模型,你都避不开文章的框架和对现实的各类描绘。现实属于客观的存在,你的描绘就是对现实存在的抽象缩影,这种抽象就属于建模。只不过你使用的是语言描绘叙述,并非方程式罢了。当代意义上的计量经济模型,是以方程式〔组〕加残差的形式构成的。往往是复杂的社会经济问题的简化描绘叙述,它应该是论文的核心,而论文的其他部分则是对模型解释、铺垫、基础讲明等内容。二、建模理论的恰当性。任何一个模型的构建都有着其观察视角,及其理论或经历体验根据。只要你根据的理论符合现实时,你才能得到有代表性的有效模型。这种有效性在模型的使用阶段主要表现为预测性误差很小。这一点在现实的模型使用中是很难做到的,主要原因如下:首先,我所根据的理论经历体验,多是盲人摸象式的观察和感受得到的。这种有偏感受的代表性,自然要影响到模型的质量。由于西方主流经济学的形式化片面发展,使得其经济理论很难符合我们国家的现实,其解释力也很有限,而我们的很多学者又以学习和借鉴西方理论来构建模型,所以这是当前的大量模型无效的根本原因。其次,计划经济的实验性道路的失败,社会市场经济的初建时间不长。还有很多理论和猜测需要实践的检验。在没有实践检验之前,我们的猜测所产生的任何偏差都会引起模型的无效。三、对现实观察的恰当性。统计观察数据是决定模型有效的另一个重要因素,即在模型的初步设计后,我们多会感觉到观察数据的短缺,于是会产生很多获取统计数据途经,进而就会产生一系列的数据代表性问题。这在论文写作中又是普遍存在的较严重的问题,其详细的表现及成因可能有如下几个方面:第一,有相当一部分论文采取以相关数据来替代实证所需的观察数据,罢了有数据的代表性就成为模型有效与否的主要问题。由于已有数据多是国家统计局的公开信息,因而很多模型的内涵不同,实证的结果却都很相近,甚至模型的经济意义都变了味道。第二,有部分论文采取了自个组织问卷或采访等方式来获取所需数据。这是值得提倡的做法,但是由于观察范围的有限,很难获得会面有代表性的系统数据。进而使得模型也不具有代表性了。四、模型应用的条件及其恰当性。反映社会经济现象的系统性模型很多,常见的模型及其应用条件是人们经常忽略的问题,现总结如下:第一,最简单和最常用的系统模型就是期望值为零,方差为固定常数的随机干扰系统。它是计量经济模型的重要组成部分,建模经过中以残差的方式出现。假如模型中的解释变量能够很好的解释被解释变量的话,则残差将是零均值、同方差、无自相关的平稳变化的随机干扰子系统。否则,残差将表现出存在异方差或自相关等严重问题。第二,对社会经济现象的动态规律的研究,能够通过自相关、偏自相关、相互关等函数的分布特征,来确定计量经济模型中各变量的滞后阶数。即当某变量的自相关函数是拖尾的,而偏自相关函数表现为P阶截尾的特征时,则讲明该变量为P阶自回归经过AR〔P〕;假如某变量的自相关函数是Q阶截尾的,而偏自相关函数却是拖尾的,则该变量为Q阶移动平均经过MA〔Q〕;假如一个变量的自相关和偏自相关函数都是截尾的或都表现为拖尾的特征时,则该变量就是自回归移动平均经过ARMA〔P,Q〕。在回归模型中假如被解释变量是自回归经过,则该模型就叫做自回归模型ARM;假如解释变量是自回归经过,则该模型叫做分布滞后模型DLM;假如两者都是自回归经过,该模型就叫做自回归分布滞后模型ADLM.ADLM的分布滞后阶数能够通过相互关系数的阶数,或格兰杰因果检验等方式方法来分析判定。五、模型的估算和检验的恰当性。模型的估算和检验多是采用固定的程序进行的,华而不实的算法、应用条件、使用原则等方面的不恰当使用,或者根本不进行检验等情况的广泛存在,使得模型的有效性大大减弱。常见错误的主要表现如下:〔一〕没有进行各类检验或检验内容不全面的问题。在上期有关计量模型的检验知识介绍中,我们将对模型的检验分为四类,华而不实的绝大多数检验都是要做的。而我们会看到很多不做检验就使用的模型,这在科学研究中是很避讳的事情,然而这种避讳却是当前很容易出现问题。模型构建中的某些检验是必需要做的,如变量的显着性检验、残差的异方差性和自相关性检验等等都是不能缺省的。〔二〕模型估算上的主要问题。当前在计量建模中的估算方式方法很多,尤其是机器学习思想引导下,新的人工智能研究所得到估算方式方法更多。而这些算法所产生的偏差及随机干扰性的误差,多数是不可控制的。华而不实经过证明的最佳线性无偏估计很少,很多方式方法需要逐步修正来完善。而这一完善经过需要收敛集中才有意义。可在实际建模中,却存在着大量的只合适内插预测,不合适外推预测的估算模型。如大量的存在条件异方差、自相关的各类模型,以及向量自回归的、两点法、三点法、指数平滑和移动平均等方式方法得到的估算模型,往往都存在着这类不收敛问题。〔三〕回归与协整分析的恰当使用问题。回归分析的方式方法在自然科学的研究中广泛使用,且效果很好。但是在社会科学的研究中,却广泛的存在着伪回归的问题。为了避免伪回归,恩格尔和格兰杰等学者研发出协整分析的相关内容,并因而而获得了诺贝尔经济学奖。然而我们在使用和理解这些知识时却产生了很多问题:首先,将协整与回归分裂开来,并视为豪不相关的东西。在自然界的大量平稳现象中,回归关系是稳定的,所以回归分析是科学研究中最常用的方式方法之一。但是在经济学的研究中,人们发现社会经济现象绝大多数都是非平稳的〔即单整经过〕。在非平稳的现象之间建立回归方程,很容易产生伪回归的结果。即本来豪不相关的现象,往往被以为是因果关系,且统计上是显着的。只要协整系统所表现出的回归关系,才是真正的因果关系,我们称之为协整回归。协整系统是指由一系列不平稳的单整序列构成的复杂稳定系统。在该系统中,就各个单整序列而言,都是不稳定的。而它们综合在一起时,却表现为平稳的状态。所以在求解回归方程时,需要进行协整性检验,即观察其残差项能否为平稳的,若残差平稳,则回归方程就是协整的回归。其次,为了避免伪回归,提高寻找协整回归的效率,在建立协整回归之前,先要对各回归元素进行平稳性检验。一般要求各回归元素都是同阶单整经过,若单整阶数不同,则要求被解释变量的单整阶数不能单独高于解释变量的单整阶数,且最高阶的单整变量要在两个以上。这是保证多阶协整关系存在的必要条件。六、模型能否好用问题。模型的作用一般以为是预测、政策模拟、构造分析、理论验证等四个方面。华而不实经济预测是最基本的使用,所以保证能够预测是对模型好用与否的最基本要求。由于早期的计量经济建模多是截面数据模型,用于动态性预测时很不准确,后来人们又开发出很多时序分析的方式方法。然而时序分析用于预测时,又多基于鉴往知来的统计经历体验规律进行的,所以在不平稳的现实社会经济问题中,由于历史重演的可能性不大的,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论