第十一章 弯曲应力1_第1页
第十一章 弯曲应力1_第2页
第十一章 弯曲应力1_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十一章弯曲应力中性轴r7max一.对称弯曲正应力中性轴r7maxMb=yy(11-3)z(11-3)式为梁弯曲横截面上任意一点的正应力公式。式中:。一梁横截面上任意一点的正应力M―梁横截面上的弯矩I—梁横截面对z轴的惯性矩zy—梁横截面。到中性层的距离计算时M、y取绝对值代入,。正负由梁轴线的凹凸判断。(11-5)TOC\o"1-5"\h\zM M(11-5)\o"CurrentDocument"b=y= -maxImaxWz z(11-5)式为梁弯曲横截面上最大的正应力公式。式中:W 为抗弯截面系数;单位:m3。zymax(11-3)、(11-5)公式适用范围:对称弯曲梁;纯弯曲梁及1/h>4的横力弯曲梁;线弹性材料。・二.截面的惯性矩・1.矩形截面 bh3 bh2I=叱W= z12 z62.圆形截面nd4nd3I=I=W一W一z y 64zy323.圆环截面I=I=空(-a4)W一W一nD3C1-a4z y 64z y324.组合公式:I=刀I;z ziI=刀Iyy

例2矩形截面简支梁承受均布载荷作用。已知:矩形的宽度b=20mm,高度h=30mm;均布载荷集度q=10kN/m;梁的长度l=450mm。求:梁最大弯矩截面上1、2两点处的正应力。解:1.受力分析F=F=q=2.25x103NRA RB2M:2FrbL梁的中点处横截面上弯矩最大,数值为M=世=10kN/mx1°3x(45°mmx1°-3)2=0.253x103N•mM:2FrbL梁的中点处横截面上弯矩最大,数值为2•求弯矩最大截面上1、2两点的正应力2•求弯矩最大截面上1、2两点的正应力•・•惯性矩为”bh3 20x303=4.5x104(mm=4.5x104(mm4)122点受压应力,故有z121点受拉应力,0253x106X75=42.2(MPa)b= max1I 4.5x104zMy0.253x106x15 ^巾、b=max2= =84.3(MPa)I 4.5x104zl/2 一 l/2 一 l/21.矩形截面梁T曲线为抛物线;当y=±h/2时,当y=0时,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论