河北省沧州青县联考2022-2023学年数学八上期末监测模拟试题含解析_第1页
河北省沧州青县联考2022-2023学年数学八上期末监测模拟试题含解析_第2页
河北省沧州青县联考2022-2023学年数学八上期末监测模拟试题含解析_第3页
河北省沧州青县联考2022-2023学年数学八上期末监测模拟试题含解析_第4页
河北省沧州青县联考2022-2023学年数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,,,则图中等腰三角形的个数是()A.5 B.6 C.8 D.92.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=903.下列四个“QQ表情”图片中,不是轴对称图形的是(

)A. B.C. D.4.在中,若是的正比例函数,则值为A.1 B. C. D.无法确定5.现有甲,乙两个工程队分别同时开挖两条600m长的隧道,所挖遂道长度y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是()A.甲队每天挖100mB.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当时,甲、乙两队所挖管道长度相同6.下列图形中是轴对称图形的有()A. B. C. D.7.据统计,2019年河北全省参加高考报名的学生共有55.96万人.将55.96用四舍五入法精确到十分位是()A.55.9 B.56.0 C.55.96 D.568.若关于x的分式方程=a无解,则a为()A.1 B.-1 C.±1 D.09.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm10.下列各式中属于最简二次根式的是()A. B. C. D.11.若正多边形的一个外角是,则这个正多边形的内角和是()A. B. C. D.12.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的个数有()个.A.4 B.3 C.2 D.1二、填空题(每题4分,共24分)13.实数的相反数是__________.14.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为_______米.15.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为_____.16.如图,函数y=2x和y=ax+4的图象相交于点A(,3),则不等式2x>ax+4的解集为___.17.若是一个完全平方式,则__________.18.如图,函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是______.三、解答题(共78分)19.(8分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.20.(8分)如图,在正方形网格中,每个小正方形的边长都是,每个小正方形的顶点叫做格点.网格中有一个格点(即三角形的顶点都在格点上).(1)在图中作出关于直线的对称图形(要求点与,与,与相对应).(2)在直线上找一点,使得的周长最小.21.(8分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?22.(10分)如图1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.请解答下列问题:(1)图中与∠DBE相等的角有:;(2)直接写出BE和CD的数量关系;(3)若△ABC的形状、大小不变,直角三角形BEC变为图2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE与AB相交于点F.试探究线段BE与FD的数量关系,并证明你的结论.23.(10分)甲、乙、丙三明射击队员在某次训练中的成绩如下表:队员成绩(单位:环)甲66778999910乙67788889910丙66677810101010针对上述成绩,三位教练是这样评价的:教练:三名队员的水平相当;教练:三名队员每人都有自己的优势;教练:如果从不同的角度分析,教练和说的都有道理.你同意教练的观点吗?通过数据分析,说明你的理由.24.(10分)如图,在平面直角坐标系中,是坐标原点,点的坐标为,点的坐标,点是直线上位于第二象限内的一个动点,过点作轴于点,记点关于轴的对称点为点.(1)求直线的解析式;(2)若,求点的坐标.25.(12分)(1)因式分解:(2)解方程:(3)计算:26.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.

(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.

参考答案一、选择题(每题4分,共48分)1、C【详解】解:∵,∴∴,∴△ABC,△ABD,△ACE,△BOC,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.2、A【分析】如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.【详解】设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.故选A.【点睛】本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.3、B【解析】解:A、是轴对称图形,故不合题意;B、不是轴对称图形,故符合题意;C、是轴对称图形,故不合题意;D、是轴对称图形,故不合题意;故选B.4、A【分析】先根据正比例函数的定义列出关于的方程组,求出的值即可.【详解】函数是正比例函数,,解得,故选.【点睛】本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.5、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】解:由图象,得600÷6=100米/天,故A正确;(500-300)÷4=50米/天,故B正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D错误;故选:D.【点睛】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.6、B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.7、B【分析】把55.96精确到十分位就是对这个数的十分位后面的数进行四舍五入即可.【详解】将55.96用四舍五入法精确到十分位的近似数是56.2.故选:B.【点睛】本题考查了近似数,精确到哪一位,即对下一位的数字进行四舍五入.这里对百分位的6入了后,十分位的是9,满了22后要进2.8、C【分析】分式方程无解包含整式方程无解,以及分式方程有增根.【详解】在方程两边同乘(x+1)得:x−a=a(x+1),整理得:x(1−a)=2a,当1−a=0时,即a=1,整式方程无解,则分式方程无解;当1−a=0时,,当时,分式方程无解解得:a=−1,故选C.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则9、C【解析】设第三边长为xcm,则8﹣3<x<3+8,5<x<11,故选C.10、A【分析】找到被开方数中不含分母的,不含能开得尽方的因数或因式的式子即可.【详解】解:A、是最简二次根式;B、,被开方数含分母,不是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含分母,不是最简二次根式.故选:A.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.11、B【分析】利用多边形外角求得该多边形的边数,再利用多边形内角和公式即可解答.【详解】解:多边形外角和为360°,故该多边形的边数为360°÷60°=6;多边形内角和公式为:(n-2)×180°=(6-2)×180°=720°故选:B.【点睛】本题考查了多边形外角和以及多边形内角和公式,熟练掌握相关公式是解题关键.12、B【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,利用“边角边”证明△ABE和△CAD全等,然后分析判断各选项即可.【详解】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°−∠BPQ=90°−60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选B.【点睛】此题考查全等三角形的判定与性质,等边三角形的性质,解题关键在于掌握各性质定义.二、填空题(每题4分,共24分)13、【分析】根据只有符号不同的两个数为互为相反数进行解答.【详解】解:根据相反数的定义,可得的相反数是.故答案为:.【点睛】此题主要考查了实数的性质,关键是掌握相反数的定义.14、3.4×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10-1,

故答案为:3.4×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、1【解析】试题分析:由垂线段最短可知,当PQ与OM垂直的时候,PQ的值最小,根据角平分线的性质可知,此时PA=PQ=1.故答案为1.考点:角平分线的性质;垂线段最短.16、x>【分析】由于函数y=2x和y=ax+4的图象相交于点A(),观察函数图象得到当x>时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(),∴当x>时,2x>ax+4,即不等式2x>ax+4的解集为x>.故答案为:x>.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17、【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵4a2+ka+9=(2a)2+ka+32,

∴ka=±2×2a×3,

解得k=±1.

故答案为:±1.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18、【分析】根据一次函数y=ax+b和正比例y=kx的图象可知,点P就是一次函数y=ax+b和正比例y=kx的交点,即二元一次方程组的解.【详解】解:根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组的解是故答案为:.【点睛】此题很简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.三、解答题(共78分)19、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.20、见解析【分析】(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:即为所求;(2)如图所示:点P即为所求的点.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.21、(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【详解】(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.22、(1)∠ACE和∠BCD;(2)BE=CD;(3)BE=DF,证明见解析【分析】(1)根据三角形内角和定理得到∠DBE=∠ACE,根据角平分线的定义得到∠BCD=∠ACE,得到答案;(2)延长BE交CA延长线于F,证明△CEF≌△CEB,得到FE=BE,证明△ACD≌△ABF,得到CD=BF,证明结论;(3)过点D作DG∥CA,交BE的延长线于点G,与AE相交于H,分别证明△BGH≌△DFH、△BDE≌△GDE,根据全等三角形的性质解答即可.【详解】解:(1)∵BE⊥CD,∴∠E=90°,∴∠E=∠BAC,又∠EDB=∠ADC,∴∠DBE=∠ACE,∵CD平分∠ACB,∴∠BCD=∠ACE,∴∠DBE=∠BCD,故答案为:∠ACE和∠BCD;(2)延长BE交CA延长线于F,∵CD平分∠ACB,∴∠FCE=∠BCE,在△CEF和△CEB中,,∴△CEF≌△CEB(ASA),∴FE=BE,在△ACD和△ABF中,,∴△ACD≌△ABF(ASA),∴CD=BF,∴BE=CD;(3)BE=DF证明:过点D作DG∥CA,交BE的延长线于点G,与AE相交于H,∵DG∥AC,∴∠GDB=∠C,∠BHD=∠A=90°,∵∠EDB=∠C,∴∠EDB=∠EDG=∠C,∵BE⊥ED,∴∠BED=90°,∴∠BED=∠BHD,∵∠EFB=∠HFD,∴∠EBF=∠HDF,∵AB=AC,∠BAC=90°,∴∠C=∠ABC=45°,∵GD∥AC,∴∠GDB=∠C=45°,∴∠GDB=∠ABC=45°,∴BH=DH,在△BGH和△DFH中,,∴△BGH≌△DFH(ASA)∴BG=DF,∵在△BDE和△GDE中,,∴△BDE≌△GDE(ASA)∴BE=EG,∴BE=.【点睛】本题考查了三角形内角和定理,角平分线的意义,三角形全等的判定和性质等相关知识,解决本题的关键是:①熟练掌握三角形内角和定理,理清角与角之间存在的关系;②正确理解角平分线的性质③熟练掌握三角形全等的判定方法。23、同意教练C的观点,见解析【分析】依次求出甲、乙、丙三名队员成绩的平均数、中位数、方差及众数,根据数据的稳定性即可判断.【详解】解:依题意渴求得:甲队员成绩的平均数为=8;乙队员成绩的平均数为=8;丙队员成绩的平均数为=8;甲队员成绩的中位数为,乙队员成绩的中位数为,丙队员成绩的中位数为,甲队员成绩的方差为=[(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(9−8)2+(9−8)2+(9−8)2+(9−8)2+(10−8)2]=1.8;乙队员成绩的方差为=[(6−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(10−8)2]=1.2;丙队员成绩的方差为=[(6−8)2+(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(10−8)2+(10−8)2+(10−8)2+(10−8)2]=3;由于甲、乙、丙三名队员成绩的平均数分别为:,,,所以,三名队员的水平相当.故,教练A说的有道理.由于甲、乙、丙三名队员的成绩的中位数分别为:8.5;8;7.5.所以,从中位数方面分析,甲队员有优势.由于甲、乙、丙三名队员的成绩的方差分别为:,,.所以,从方差方面分析,乙队员有优势.由于甲、乙、丙三名队员的成绩的众数分别为:9;8;10.所以,从众数方面分析,丙队员有优势.故,教练B说的有道理.所以,同意教练C的观点.【点睛】此题主要考查数据分析的应用,解题的关键是熟知平均数、中位数、方差及众数的求解方法.24、(1);(2)【分析】(1)设直线AB解析式为,把A和B的坐标代入求出k和b的值,即可求出解析式;(2)由以及OA的长,确定出Q横坐标,根据P与Q关于y轴对称,得到P点横坐标,代入直线AB解析式求出纵坐标,即可确定出P坐标.【详解】解:(1)设直线的解析式为,∵直线过点,两点,∴解得:∴直线的解析式为.(2)如解图所示,连接、,过点作轴于点,∵当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论