版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列命题中,为真命题的是()A.直角都相等 B.同位角相等 C.若,则 D.若,则2.小颖和小亮在做一道关于整数减法的作业题,小亮将被减数后面多加了一个0,得到的差为750;小颖将减数后面多加了一个0,得到的差为-420,则这道减法题的正确结果为()A.-30 B.-20 C.20 D.303.已知是直线为常数)上的三个点,则的大小关系是()A. B. C. D.4.已知xm=6,xn=3,则x2m―n的值为(
)A.9 B. C.12 D.5.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10 B.8 C.6 D.46.直线沿轴向下平移个单位后,图象与轴的交点坐标是()A. B. C. D.7.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上,当△ABC是直角三角形时,AC的值为()A.4 B.2 C.1 D.4或18.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4) B.(-1,2) C.(5,1) D.(-1,-4)9.在平面直角坐标系中,点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.三角形的五心在平面几何中占有非常重要的地位,这五心分别是:重心、外心、内心、垂心、旁心,其中三角形的重心是三角形的()A.三条角平分线的交点B.三条中线的交点C.三条高所在直线的交点D.三边垂直平分线的交点11.若≌,则根据图中提供的信息,可得出的值为()A.30 B.27 C.35 D.4012.若4x2+kxy+9y2是一个完全平方式,则k的值是()A.12 B.72 C.±36 D.±12二、填空题(每题4分,共24分)13.若最简二次根式与可以合并,则a=____.14.如图,,,则的度数为__________.15.如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等式_____.16.在植树活动中,八年级一班六个小组植树的棵树分别是:5,7,3,,6,4.已知这组数据的众数是5,则该组数据的方差是_________.17.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.18.函数y中自变量x的取值范围是___________.三、解答题(共78分)19.(8分)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲2436乙3348(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?20.(8分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=_______,β=_______.②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.21.(8分)已知,,求.22.(10分)已知:如图,OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,AD=EB.求证:AC=CB.23.(10分)计算:+(π﹣3.14)1.24.(10分)如图,的三个顶点的坐标分别是,,.(1)直接写出点、、关于轴对称的点、、的坐标;,,;(2)在图中作出关于轴对称的图形.(3)求的面积.25.(12分)本学期我们学习了角平分线的性质定理及其逆定理,那么,你是否还记得它们的具体内容.(1)请把下面两个定理所缺的内容补充完整:角平分线的性质定理:角平分线上的点到______的距离相等.角平分线性质定理的逆定理:到角的两边距离相等的点在______.(2)老师在黑板上画出了图形,把逆定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整.已知:如右图,点是内一点,,,垂足分别为、,且______.求证:点在的______上(3)请你完成证明过程:(4)知识运用:如图,三条公路两两相交,现在要修建一个加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有______处.26.如图1,在平面直角坐标系中,直线l1:yx5与x轴,y轴分别交于A.B两点.直线l2:y4xb与l1交于点D(-3,8)且与x轴,y轴分别交于C、E.(1)求出点A坐标,直线l2的解析式;(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿着线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;(3)如图3,平面直角坐标系中有一点G(m,2),使得SCEGSCEB,求点G的坐标.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据直角、同位角的性质,平方与不等式的性质依次分析即可.【详解】A.直角都相等90°,所以此项正确;B.两直线平行,同位角相等,故本选项错误;C.若,则或,故本选项错误;D.若,则,本项正确,故选A.【点睛】本题考查的是命题与定理,熟知各项性质是解答此题的关键.2、D【分析】根据题意,设被减数为x,减数为y,则,然后根据二元一次方程组的解法,求出x、y的值,判断出这道减法题的算式是多少即可.【详解】解:设被减数为x,减数为y,则,解得,∴这道减法题的正确结果应该为:80-50=1.故选D.【点睛】此题主要考查了有理数的减法运算,以及二元一次方程组的求解方法,要熟练掌握.3、A【分析】由为常数)可知k=-5<0,故y随x的增大而减小,由,可得y1,y2,y3的大小关系.【详解】解:∵k=-5<0,∴y随x的增大而减小,∵,∵,故选:A.【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键.4、C【解析】试题解析:试题解析:∵xm=6,xn=3,∴x2m-n==36÷3=12.故选C.5、C【分析】延长AP交BC于E,根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC.【详解】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6.故选C.【点睛】本题考查了全等三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出全等三角形是解题的关键.6、D【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【详解】直线沿轴向下平移个单位则平移后直线解析式为:当y=0时,则x=2,故平移后直线与x轴的交点坐标为:(2,0).故选:D.【点睛】此题主要考查了一次函数平移变换,熟练掌握一次函数平移规律是解题关键.7、D【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,即可求出AC的值.【详解】解:如图,当△ABC是直角三角形时,有△ABC1,△ABC2两种情况,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=AB=1;在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,故选:D.【点睛】本题考查解直角三角形,构造直角三角形,掌握直角三角形中30°的角所对的直角边等于斜边的一半是解题关键.8、C【详解】解:∵一次函数y=kx+2(k≠1)的函数值y随x的增大而增大,∴k>1.A、∵当x=2,y=4时,2k+3=4,解得k=1.5>1,∴此点符合题意,故A选项错误;B、∵当x=﹣1,y=2时,﹣k+3=2,解得k=1>1,∴此点符合题意,故B选项错误;C、∵当x=5,y=1时,5k+3=1,解得k=﹣1.4<1,∴此点不符合题意,故C选项正确;D、∵当x=﹣1,y=﹣4时,﹣k+3=﹣4,解得k=7>1,∴此点符合题意,故D选项错误.故选C.【点睛】本题主要考查一次函数图象上点的坐标特征,先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可是解题的关键.9、B【解析】根据平面直角坐标系中点的坐标的符号解答即可.【详解】∵点横坐标是,纵坐标是,
∴点在第二象限.
故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【分析】根据三角形重心的概念解答即可.【详解】三角形的重心为三角形三条中线的交点故选B【点睛】本题主要考查了三角形重心的概念,掌握三角形重心的概念是解题的关键.11、A【分析】在△ABC中利用三角形内角和可求得∠A=70°,则可得∠A和∠D对应,则EF=BC,可得到答案.【详解】∵∠B=50°,∠C=60°,∴∠A=70°,∵△ABC≌△DEF,∴∠A和∠D对应,∴EF=BC=30,∴x=30,故选:A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键.12、D【分析】根据完全平方公式可知,这里首末两项是2x和3y的平方,那么中间项为加上或减去2x和3y的乘积的2倍.【详解】解:∵4x2+kxy+9y2是完全平方式,∴kxy=±2×2x•3y,解得k=±1.故选:D.【点睛】本题考查完全平方公式的知识,解题的关键是能够理解并灵活应用完全平方公式.二、填空题(每题4分,共24分)13、1【分析】由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.【详解】解:由题意,得1+2a=5−2a,解得a=1.故答案为1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.14、【分析】直接利用全等三角形的性质得出对应角相等进而求出答案.【详解】:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,∴∠DCA=65°-40°=25°.故答案为:25°.【点睛】此题主要考查了全等三角形的性质,正确得出对应角的度数是解题关键.15、.【解析】依据大正方形的面积的不同表示方法,即可得到等式.【详解】由题可得,大正方形的面积=a2+2ab+b2;大正方形的面积=(a+b)2;∴a2+2ab+b2=(a+b)2,故答案为a2+2ab+b2=(a+b)2【点睛】本题主要考查了完全平方公式的几何应用,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.16、【分析】根据众数、平均数、方差的定义进行计算即可.【详解】∵这组数据5、7、3、x、6、4的众数是5,∴x=5,∴这组数据5、7、3、5、6、4的平均数是=5,∴S2=[(5−5)2+(7−5)2+(3−5)2+(5−5)2+(6−5)2+(4−5)2]=,故答案为.【点睛】本题考查了众数、方差,掌握众数、平均数、方差的定义是解题的关键.17、且.【分析】根据一元二次方程的定义,得到m-2≠0,解之,根据“一元二次方程(m-2)x2+x-1=0有两个不相等的实数根”,结合判别式公式,得到一个关于m的不等式,解之,取两个解集的公共部分即可.【详解】根据题意得:,解得:,解得:,综上可知:且,故答案为:且.【点睛】本题考查了根的判别式,一元二次方程的定义,正确掌握根的判别式公式,一元二次方程的定义是解题的关键.18、【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于1.【详解】解:根据题意得:x-2≠1,解得:x≠2.故答案为:x≠2.【点睛】本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为1.三、解答题(共78分)19、(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:,解得:,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.20、(1)①20°,10°;②α=2β;(2)见解析.【详解】(1)①∵AD=AE,∴∠AED=∠ADE=70°,∠DAE=40°,又∵AB=AC,∠ABC=60°,∴∠BAC=∠C=∠ABC=60°,∴α=∠BAC-∠DAE=60°-40°=20°,β=∠AED-∠C=70°-60°=10°;②设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β,∴α=2β.(2)如图1,点E在CA延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△ABD中,x+α=β-y,在△DEC中,x+y+β=180°,∴α=2β-180°.当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°−2β.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.21、【分析】把x,y的值代入后,用完全平方公式计算即可.【详解】原式.【点睛】本题考查了二次根式的混合运算.在代入求值时,能用公式化简的,就要用公式化简,可能简化计算过程,避免出错.22、详见解析.【分析】先由角平分线的性质得出CD=CE,再由SAS证明△ADC≌△BEC,得出对应边相等即可.【详解】证明:∵OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,∴CD=CE,∠ADC=∠BEC=90°,在△ACD和△BCE中,∴△ADC≌△BEC(SAS),∴AC=CB.【点睛】本题考查了全等三角形的判定与性质、角平分线的性质;证明三角形全等得出对应边相等是解决问题的关键.23、.【分析】直接利用零指数幂的性质以及立方根和算术平方根的定义,进行计算,即可求解.【详解】原式=﹣4+1=﹣.【点睛】本题主要考查实数的加减混合运算,掌握零指数幂的性质以及立方根和算术平方根的定义,是解题的关键.24、(1);;;(2)图见解析;(3)1【分析】(1)根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论;(2)先分别找到A、B、C关于y轴的对称点,然后连接、、即可;(3)用一个长方形框住△ABC,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)根据关于x轴对称的两点坐标关系:关于x轴的对称点的坐标为;关于x轴的对称点的坐标为;关于x轴的对称点的坐标为.故答案为:;;.(2)先分别找到A、B、C关于y轴的对称点,然后连接、、,如下图所示:即为所求;(3)如上图所示,用一个长方形框住△ABC,由图可知:S△ABC=3×4-=1.【点睛】此题考查的是求关于x轴对称点的坐标、画关于y轴对称的图形和求网格中三角形的面积,掌握关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数、关于y轴对称的图形的画法是解决此题的关键.25、(1)这个角的两边,角平分线上;(2)PE,平分线上;(3)见解析;(1)1【分析】(1)根据角平分线的性质定理和判定定理解答;
(2)根据题意结合图形写出已知;
(3)作射线OP,证明Rt△OPD≌Rt△OPE即可;
(1)根据角平分线的性质定理解答.【详解】解:(1)角平分线性质定理:角平分线上的点到这个角的两边的距离相等.
角平分线判定定理:到角的两边距离相等的点在角平分线上,
故答案为:这个角的两边;角平分线上;
(2)已知:如图1,点P是∠AOB内一点,PD⊥AO,PE⊥OB,垂足分别为D、E,且PD=PE,求证:点P在∠AOB的平分线上.
故答案为:PE;平分线上;(3)如图:作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中地理选择性必修3期末试卷及答案-人教版-2024-2025学年
- 《第六单元 世界资本主义经济政策的调整》试卷及答案-高中历史必修2-人教版-2024-2025学年
- 2024年废弃物处理与资源化服务协议
- 2024年建筑墙改梁施工标准合同
- 2024年微站租赁权授权协议
- 2024年度BIM模型资料归档与保管服务合同
- 9A Unit3 Teenage Problems (选拔卷)-【单元测试】(译林版)(解析版)
- 2024年建筑项目贷款协议
- 2024年建筑施工合同:地标性大楼设计与施工条款
- 2024个人与健身俱乐部会员服务合同
- 中国女性生理健康白皮书
- 天然气巡检记录表
- 甲苯磺酸瑞马唑仑临床应用
- 民法典讲座-继承篇
- 外包施工单位入厂安全培训(通用)
- 糖尿病健康知识宣教课件
- 客户接触点管理课件
- Python语言学习通超星课后章节答案期末考试题库2023年
- 医学-心脏骤停急救培训-心脏骤停急救教学课件
- 高中英语-Book 1 Unit 4 Click for a friend教学课件设计
- 年产30万吨碳酸钙粉建设项目可行性研究报告
评论
0/150
提交评论