版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,ΔABC中,∠A=30°,∠C=90°,AB的垂直平分线DE交AC于D点,交AB于E点,则下列结论错误的是()A.AD=BC B.AD=DB C.DE=DC D.BC=AE2.有大小不同的两个正方形按图、图的方式摆放.若图中阴影部分的面积,图中阴影部分的面积是,则大正方形的边长是()A. B. C. D.3.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了,下坡用了,根据题意可列方程组()A. B.C. D.4.下面是课本中“作一个角等于已知角”的尺规作图过程.已知:∠AOB.求作:一个角,使它等于∠AOB.作法:如图(1)作射线O'A';(2)以O为圆心,任意长为半径作弧,交OA于C,交OB于D;(3)以O'为圆心,OC为半径作弧C'E',交O'A'于C';(4)以C'为圆心,CD为半径作弧,交弧C'E'于D';(5)过点D'作射线O'B'.则∠A'O'B'就是所求作的角.请回答:该作图的依据是()A.SSS B.SAS C.ASA D.AAS5.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条中线的交点6.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A. B. C. D.7.如图,△中,,是中点,下列结论,不一定正确的是()A. B.平分 C. D.8.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)9.如图,在等腰中,顶角,平分底角交于点是延长线上一点,且,则的度数为()A.22° B.44° C.34° D.68°10.下列四组数据中,能作为直角三角形三边长的是()A.1,2,3 B.,3, C.,, D.0.3,0.4,0.511.设正比例函数的图象经过点,且的值随x值的增大而减小,则()A.2 B.-2 C.4 D.-412.下列各式中,正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.若4a2+b2﹣4a+2b+2=0,则ab=_____.14.在实数范围内分解因式:____.15.方程的根是______.16.64的立方根是_______.17.如图,在△ABC中,∠ACB=90°,AC=15,BC=9,点P是线段AC上的一个动点,连接BP,将线段BP绕点P逆时针旋转90°得到线段PD,连接AD,则线段AD的最小值是______.18.在平面直角坐标系中,A(1,0),B(0,2),C(-4,2),若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为________________.三、解答题(共78分)19.(8分)先化简,再求值其中a=1,b=1;20.(8分)先化简,再求值:其中21.(8分)如图所示,在中,,,,点从点开始沿边向点以的速度运动,同时另一点由点开始沿边向点以的速度运动.(1)后,点与点之间相距多远?(2)多少秒后,?22.(10分)如图是由边长为1的小正方形组成的网格,直线是一条网格线,点,在格点上,的三个顶点都在格点(网格线的交点)上.(1)作出关于直线对称的;(2)在直线上画出点,使四边形的周长最小;(3)在这个网格中,到点和点的距离相等的格点有_________个.23.(10分)如图,在网格中,每个小正方形的边长都为.(1)建立如图所示的平面直角坐标系,若点,则点的坐标_______________;(2)将向左平移个单位,向上平移个单位,则点的坐标变为_____________;(3)若将的三个顶点的横纵坐标都乘以,请画出;(4)图中格点的面积是_________________;(5)在轴上找一点,使得最小,请画出点的位置,并直接写出的最小值是______________.24.(10分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BD=5,CD=3,求AC的长.25.(12分)随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.某快递中转站平均每天需要分拣10万件快件,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作(每天工作时间为8小时).26.某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费125元.品名商店笔记本(元/件)水笔(元/件)友谊超市52网店4(1)班级购买的笔记本和水笔各多少件?(2)求从网店购买这些奖品可节省多少元?
参考答案一、选择题(每题4分,共48分)1、A【解析】根据直角三角形的性质得到AB=2BC,根据线段垂直平分线的性质得到DA=DB,根据直角三角形的性质、角平分线的性质判断即可.【详解】∵∠C=90°,∠A=30°,
∴∠ABC=60°,AB=2BC,
∵DE是AB的垂直平分线,
∴DA=DB,故B正确,不符合题意;
∵DA=DB,BD>BC,
∴AD>BC,故A错误,符合题意;
∴∠DBA=∠A=30°,
∴∠DBE=∠DBC,又DE⊥AB,DC⊥BC,
∴DE=DC,故C正确,不符合题意;
∵AB=2BC,AB=2AE,
∴BC=AE,故D正确,不符合题意;
故选:A.【点睛】考查的是直角三角形的性质、线段垂直平分线的性质、角平分线的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.2、B【分析】添加如解题中的辅助线,设大正方形的边长为a,小正方形的边长为b,然后根据图1中阴影部分的面积等于长方形的面积减去空白部分的面积和图2中阴影部分的面积等于底乘高除以2,列出方程,即可求出b、a的值.【详解】解:添加如图所示的辅助线设大正方形的边长为a,小正方形的边长为b由图1可知S阴影==20①由图2可知S阴影=②整理①,得:整理②,得∴∴b=4或-4(不符合实际,故舍去)把b=4代入②中,解得:a=7故选B.【点睛】此题考查的是根据阴影部分的面积求正方形的边长,掌握用整式表示出阴影部分的面积和方程思想是解决此题的关键.3、B【分析】根据路程=时间乘以速度得到方程,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米,∴,∴,故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.4、A【分析】根据作图可得DO=D′O′,CO=C′O′,CD=C′D′,再利用SSS判定△D′O′C′≌△DOC即可得出∠A'O'B'=∠AOB,由此即可解决问题.【详解】解:由题可得,DO=D′O′,CO=C′O′,CD=C′D′,
∵在△COD和△C′O′D′中,∴△D′O′C′≌△DOC(SSS),
∴∠A'O'B'=∠AOB故选:A【点睛】此题主要考查了基本作图---作一个角等于已知角,三角形全等的性质与判定,熟练掌握相关知识是解题的关键.5、B【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【详解】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.【点睛】本题考查了对线段垂直平分线性质的理解和运用,注意:线段两端点的距离相等的点在这条线段的垂直平分线上.6、A【分析】科学记数法的表示形式为:(其中1≤∣a∣﹤10,n为整数),当原数的绝对值小于1时,n为负数,且绝对值为原数左起第一个不为零的数字前零的个数,再确定a值即可.【详解】0.00000095=,故选:A.【点睛】本题考查科学记数法表示较小的数,熟练掌握科学记数法的表示形式,会确定a值和n值是解答的关键.7、C【分析】根据等边对等角和等腰三角形三线合一的性质解答.【详解】解:∵AB=AC,
∴∠B=∠C,
∵AB=AC,D是BC中点,
∴AD平分∠BAC,AD⊥BC,
所以,结论不一定正确的是AB=2BD.
故选:C.【点睛】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.8、D【解析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.9、C【分析】先根据等腰三角形的性质求得∠ACB=68º,从而求出∠ACE=112º,再由求出的度数.【详解】∵在等腰中,顶角,∴∠ACB=,又∵,∠ACB=∠E+∠CDE,∴∠E=∠CDE=.故选:C.【点睛】考查了三角形外角性质、等腰三角形的性质和三角形内角和定理,解题关键是利用了三角形的一个外角等于与它不相邻的两个内角和.10、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;
B、()2+()2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;
D、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.
故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.11、B【分析】先把点带入得,解得m=,再根据正比例函数的增减性判断m的值.【详解】因为的值随x值的增大而减小,所以m<0即m=-1.故选B.考点:曲线上的点与方程、正比例函数的性质.12、D【分析】根据分式的基本性质逐一判断即可.【详解】A.当b≠0时,将分式的分子和分母同除以b,可得,故本选项错误;B.根据分式的基本性质,,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【点睛】此题考查的是分式的变形,掌握分式的基本性质是解决此题的关键.二、填空题(每题4分,共24分)13、﹣0.5【分析】利用完全平方公式进行因式分解得到2个完全平方式,通过平方的非负性质推导出,n个非负项相加为0,则每一项为0.【详解】解:∵,∴,∴解得,∴.故答案为:.【点睛】利用完全平方公式因式分解,通过平方非负的性质为本题的关键.14、【分析】将原式变形为,再利用平方差公式分解即可得.【详解】===,故答案为:.【点睛】本题主要考查实数范围内分解因式,解题的关键是熟练掌握完全平方公式和平方差公式.15、,【分析】先移项得到x(x+1)-1(x+1)=0,再提公因式得到(x+1)(x-1)=0,原方程化为x+1=0或x-1=0,然后解一次方程即可.【详解】解:∵x(x+1)-1(x+1)=0,
∴(x+1)(x-1)=0,
∴x+1=0或x-1=0,
∴x1=-1,x1=1.
故答案为:x1=-1,x1=1.【点睛】本题考查了解一元二次方程—因式分解法:先把方程,右边化为0,再把方程左边因式分解,这样把原方程转化为两个一元一次方程,然后解一次方程即可得到原方程的解.16、4.【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.17、3【分析】如图,过点D作DE⊥AC于E,有旋转的性质可得DP=BP,∠DPB=90°,由“AAS”可证△DEP≌△PCB,可得DE=CP,EP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.【详解】如图,过点D作DE⊥AC于E,∵将线段BP绕点P逆时针旋转90°得到线段PD,∴DP=BP,∠DPB=90°,∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,∴△DEP≌△PCB(AAS)∴DE=CP,EP=BC=9,∵AE+PC=AC-EP=6∴AE+DE=6,∵AD2=AE2+DE2,∴AD2=AE2+(6-AE)2,∴AD2=2(AE-3)2+18,当AE=3时,AD有最小值为3,故答案为3.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,利用二次函数的性质求最小值是本题的关键.18、(-3,0)或(5,0)或(-5,4)【解析】根据题意画出符合条件的三种情况,根据图形结合平行四边形的性质、A、B、C的坐标求出即可.【详解】解:
如图有三种情况:①平行四边形AD1CB,
∵A(1,0),B(
0,2),C(-4,2),
∴AD1=BC=4,OD1=3,
则D的坐标是(-3,0);
②平行四边形AD2BC,
∵A(1,0),B(
0,2),C(-4,2),
∴AD2=BC=4,OD2=1+4=5,
则D的坐标是(5,0);
③平行四边形ACD3B,
∵A(1,0),B(
0,2),C(-4,2),
∴D3的纵坐标是2+2=4,横坐标是-(4+1)=-5,
则D的坐标是(-5,4),
故答案为(-3,0)或(5,0)或(-5,4).【点睛】本题考查了坐标与图形性质,平行四边形的性质等知识点,解题的关键是掌握①数形结合思想的运用,②分类讨论方法的运用.三、解答题(共78分)19、,【分析】根据整式的乘法法则先算乘法,再合并同类项,把代入求值即可.【详解】解:当时,上式【点睛】本题考查的是整式的化简求值,掌握整式的混合运算是解题的关键.20、-2【分析】先利用完全平方式展开化简,再将x,y的值代入求解即可.【详解】解:原式=(+2x-2xy+y--y)=(-4xy+2x)=-2x+8y-4,代入得该式=-2.【点睛】本题主要考察整式化简,细心化简是解题关键.21、(1)(2)【分析】(1)在,根据勾股定理来求的长度.(2)在第一小题的基础之上,列出含时间的方程,解方程即可得解.【详解】(1)设运动时间为秒∴,∵∴当时,,∴∴在中,∴后,点与点之间相距(2)∵根据题意可知,,∴当时,∴解得∴秒后,.【点睛】本题是一道动点问题,难度中等,主要考查了勾股定理以及行程问题的公式.认真审题即可得解.22、(1)见详解;(2)见详解;(3)1【解析】(1)利用网格特点和轴对称的性质分别作出A、B、C关于直线EF的对称点A1、B1、C1即可;
(2)连接BA1交直线EF于M,利用两点之间线段最短判断MA+MB的值最小,从而得到四边形AMBC的周长最小;
(3)利用网格特点,作AB的垂直平分线可确定满足条件的格点.【详解】解:(1)如图,△A1B1C1为所作;
(2)如图,点M为所作;
(3)如图,到点A和点B的距离相等的格点有1个.
故答案为1.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径的解决方法.23、(1);(2);(3)见解析;(4)5;(5)【分析】(1)根据第一象限点的坐标特征写出C点坐标;
(2)利用点平移的坐标变换规律求解;
(3)将△AOC的三个顶点的横纵坐标都乘以-得到A1、C1的坐标,然后描点即可;
(4)用一个矩形的面积分别减去三个三角形的面积去计算△AOC的面积;
(5)作C点关于x轴的对称点C′,然后计算AC′即可.【详解】解:(1)如图,点的坐标;(2)将向左平移个单位,向上平移个单位,则点的坐标变为;(3)如图,为所作;(4)图中格点的面积;(5)如图,作C关于x轴的对待点C’,连接C’A交x轴于点P,点即为所求作的点,的最小值.故答案为(1);(2);(4);(5).【点睛】本题考查了作图-平移变换及轴对称变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了最短路径问题.24、(1)见解析;(2)6.【分析】(1)先以A为圆心,小于AC长为半径画弧,交AC,AB运用H、F;再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,最后画射线AM交CB于D;(2)过点D作DE⊥AB,垂足为E,先证明△ACD≌△AED得到AC=AE,CD=DE=3,再由勾股定理得求的BE长,然后在Rt△ABC中,设AC=x,则AB=AE+BE=x+4,最后再次运用勾股定理求解即可.【详解】解:(1)如图:(2)过点D作DE⊥AB,垂足为E.则∠AED=∠BED=90°∵AD平分∠BAC∴CD=DE在RtACD和RtAED中CD=DE,AD=AD∴△CDE≌△AED(H
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑基础工程桩基础
- 2024至2030年中国工作母机专用联轴器数据监测研究报告
- 2024至2030年中国实验室电导率/电阻率计数据监测研究报告
- 2024至2030年中国双面双花毯数据监测研究报告
- 经管营销企业资产损失所得税税前扣除管理办法讲解
- 探究函数与方程-深入理解代数与解题技巧
- 2024年中国高强度钢结构楼承板市场调查研究报告
- 2024年中国蒙娜丽莎工艺品市场调查研究报告
- 2024年中国立式剥皮机市场调查研究报告
- 急诊病历书写标准化研究计划
- 空分预冷系统介绍
- 火力发电厂建筑装修设计标准
- 表演课ppt课件(PPT 44页)
- 中医护理发展史课件(PPT 35页)
- 药物临床试验概述课件(PPT 23页)
- 万头肉牛养殖场建设项目可行性研究报告
- 色彩的基础知识课件.PPT
- 《毛笔书法基础知识讲座——书法常识》PPT课件
- 桥梁伸缩缝施工及质量保证要点
- 留守儿童一生一档联系卡
- 城镇5000吨日供水工程可行性研究报告(含图纸)
评论
0/150
提交评论