版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,将一副三角板如图放置,如果,那么点到的距离为()A. B. C. D.2.如图,在△ABC中,点D是BC的中点,点E是AC的中点,若DE=3,则AB等于()A.4 B.5 C.5.5 D.63.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A. B.C. D.4.在平面直角坐标系xoy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,若B点的对应点B′的坐标为(﹣6,0),则A点的对应点A′坐标为()A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)5.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤ D.t≥6.如图,是的切线,切点分别是.若,则的长是()A.2 B.4 C.6 D.87.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A. B. C.3 D.28.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.49.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象过点(0,﹣3) B.图象与x轴的交点为(1,0),(﹣3,0)C.此函数有最小值为﹣6 D.当x<1时,y随x的增大而减小10.如图,矩形OABC的顶点A、C分别在x、y轴上,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E.若四边形ODBE的面积为9,则k的值为()A.2 B. C.3 D.11.已知如图,直线,相交于点,且,添加一个条件后,仍不能判定的是().A. B. C. D.12.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(
)A. B. C. D.3二、填空题(每题4分,共24分)13.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,在飞行过程中,当小球的行高度为15m时,则飞行时间是_____.14.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.15.如图,在平面直角坐标系xOy中,点A在函数y=(x>0)的图象上,AC⊥x轴于点C,连接OA,则△OAC面积为_____.16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.如图,从外一点引的两条切线、,切点分别是、,若,是弧上的一个动点(点与、两点不重合),过点作的切线,分别交、于点、,则的周长是________.18.如图,一块含30°的直角三角板ABC(∠BAC=30°)的斜边AB与量角器的直径重合,与点D对应的刻度读数是54°,则∠BCD的度数为_____度.三、解答题(共78分)19.(8分)如图①,在中,,是边的中点,以点为圆心的圆经过点.(1)求证:与相切;(2)在图①中,若与相交于点,与相交于点,连接,,,如图②,则________.20.(8分)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.21.(8分)如图1,直线y=kx+1与x轴、y轴分别相交于点A、B,将△AOB绕点A顺时针旋转,使AO落在AB上,得到△ACD,将△ACD沿射线BA平移,当点D到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤2,2<m≤a时,函数的解析式不同)(1)填空:a=,k=;(2)求S关于m的解析式,并写出m的取值范围.22.(10分)爸爸有一张“山西大剧院”的演出门票,计划通过“掷筹码”的游戏将门票奖励给哥哥或者弟弟,游戏规则如下:准备两个质量均匀的筹码,在第一个筹码的一面画上“×”,另一面画上“○”;在第二个筹码的一面画上“○”,另一面画上“△”.随机掷出两个筹码,当筹码落地后,若朝上的一面都是“○”,则哥哥获得门票;否则,弟弟获得门票.你认为这个游戏公平吗?说明理由.23.(10分)如图,点的坐标为,把点绕坐标原点逆时针旋转后得到点.(1)求点经过的弧长;(结果保留)(2)写出点的坐标是________.24.(10分)我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价(元)与年销售量(万件)之间的变化可近似的看作是如下表所反应的一次函数:销售单价(元)200230250年销售量(万件)14119(1)请求出与之间的函数关系式,并直接写出自变量的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?25.(12分)如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若BD=3,AD=4,则DE=.26.甲、乙两人进行摸牌游戏现有三张除数字外都相同的牌,正面分别标有数字2,5,1.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为4的倍数,则甲获胜;若抽取的数字和为奇数,则乙获胜这游戏公平吗?请用概率的知识加以解释.
参考答案一、选择题(每题4分,共48分)1、B【分析】作EF⊥BC于F,设EF=x,根据三角函数分别表示出BF,CF,根据BD∥EF得到△BCD∽△FCE,得到,代入即可求出x.【详解】如图,作EF⊥BC于F,设EF=x,又∠ABC=45°,∠DCB=30°,则BF=EF÷tan45°=x,FC=EF÷tan30°=x∵BD∥EF∴△BCD∽△FCE,∴,即解得x=,x=0舍去故EF=,选B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定及解直角三角形的应用.2、D【分析】由两个中点连线得到DE是中位线,根据DE的长度即可得到AB的长度.【详解】∵点D是BC的中点,点E是AC的中点,∴DE是△ABC的中位线,∴AB=2DE=6,故选:D.【点睛】此题考查三角形的中位线定理,三角形两边中点的连线是三角形的中位线,平行于三角形的第三边,且等于第三边的一半.3、A【分析】本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y=ax+b的图象相比较看是否一致.【详解】A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选A.4、A【分析】根据相似比为2,B′的坐标为(﹣6,0),判断A′在第三象限即可解题.【详解】解:由题可知OA′:OA=2:1,∵B′的坐标为(﹣6,0),∴A′在第三象限,∴A′(﹣2,﹣4),故选A.【点睛】本题考查了图形的位似,属于简单题,确定A′的象限是解题关键.5、B【分析】将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解不等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.6、D【分析】因为AB、AC、BD是的切线,切点分别是P、C、D,所以AP=AC、BD=BP,所以.【详解】解:∵是的切线,切点分别是.∴,∴,∵,∴.故选D.【点睛】本题考查圆的切线的性质,解题的关键是掌握切线长定理.7、B【解析】如图所示:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=3√,OP=3,∴PA=故选B.点睛:本题考查了垂径定理、圆周角定理、勾股定理的应用.解答此题的关键是找出“PA⊥OA时,∠OPA最大”这一隐含条件.当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.8、C【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-=1,即b=-2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y>0,即a-b+c>0,所以①正确;∵抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac-4an=4a(c-n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C.【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.9、D【分析】通过计算自变量x对应的函数值可对A进行判断;利用抛物线与x轴的交点问题,通过解方程2(x+1)(x﹣3)=0可对B进行判断;把抛物线的解析式配成顶点式,然后根据二次函数的性质对C、D进行判断.【详解】解:A、当x=0时,y=2(x+1)(x﹣3)=﹣6,则函数图象经过点(0,﹣6),所以A选项错误;B、当y=0时,2(x+1)(x﹣3)=0,解得x1=﹣1,x2=3,则抛物线与x轴的交点为(﹣1,0),(3,0),所以B选项错误;C、y=2(x+1)(x﹣3)=2(x﹣1)2﹣8,则函数有最小值为﹣8,所以D选项错误;D、抛物线的对称轴为直线x=1,开口向上,则当x<1时,y随x的增大而减小,所以D选项正确.故选:D.【点睛】本题考查了二次函数的图像和性质,函数的最值,增减性,与坐标轴交点坐标熟练掌握是解题的关键10、C【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、▱OABC的面积与|k|的关系,列出等式求出k值.【详解】解:由题意得:E、M、D位于反比例函数图象上,则,,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S▱ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S▱ONMG=4|k|,由于函数图象在第一象限,∴k>0,则,∴k=1.故选:C.【点睛】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.11、C【分析】根据全等三角形判定,添加或或可根据SAS或ASA或AAS得到.【详解】添加或或可根据SAS或ASA或AAS得到,添加属SSA,不能证.故选:C【点睛】考核知识点:全等三角形判定选择.熟记全等三角形的全部判定是关键.12、B【解析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【详解】由图形折叠可得BE=EG,DF=FG,∵正方形ABCD的边长为3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.二、填空题(每题4分,共24分)13、1s或3s【解析】根据题意可以得到15=﹣5x2+20x,然后求出x的值,即可解答本题.【详解】∵y=﹣5x2+20x,∴当y=15时,15=﹣5x2+20x,得x1=1,x2=3,故答案为1s或3s.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.14、80π【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:=8,圆锥的底面周长是:2×8π=16π,
则×16π×10=80π.故答案为:80π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15、1【分析】根据反比例函数比例系数k的几何意义可得S△OAC=×2=1,再相加即可.【详解】解:∵函数y=(x>0)的图象经过点A,AC⊥x轴于点C,∴S△OAC=×2=1,故答案为1.【点睛】本题考查了反比例函数比例系数k的几何意义,掌握过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键.16、1.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+1+3+4+5)÷5=3,∴方差=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]÷5=1.考点:方差.17、【解析】由切线长定理得CD=AD,CE=BE,PA=PB,表示出△PED的周长即可解题.【详解】解:由切线长定理得CD=AD,CE=BE,PA=PB;
所以△PED的周长=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=2PA=16cm.【点睛】本题考查了圆的切线,属于简单题,熟悉圆的切线长定理是解题关键.18、1.【分析】先利用圆周角定理的推论判断点C、D在同一个圆上,再根据圆周角定理得到∠ACD=27°,然后利用互余计算∠BCD的度数.【详解】解:∵∠C=90°,∴点C在量角器所在的圆上∵点D对应的刻度读数是54°,即∠AOD=54°,∴∠ACD=∠AOD=27°,∴∠BCD=90°﹣27°=1°.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)连接OC,利用等腰三角形的三线合一性质证明即可.(2)利用30°的特殊三角形的性质求出即可.【详解】(1)证明:连接.,是边的中点,.又点在上,与相切.图①(2)∵∠AOB=120°,OA=OB,∴∠A=30°,又∵OD=6∴OA=12∴AC=,AB=∵DE是三角形OAB的中位线,∴DE=.图②【点睛】本题考查圆与三角形的结合,关键在于熟悉基础知识.20、(1)证明见解析;(2)BM=MC.理由见解析.【分析】(1)根据正方形的性质可得AB=BC,∠ABC=∠C,然后利用“边角边”证明△ABM和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得,从而得到,即可得解.【详解】(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,,∴△ABM≌△BCP(SAS),∴AM=BP,∠BAM=∠CBP,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP,∵AM并将线段AM绕M顺时针旋转90°得到线段MN,∴AM⊥MN,且AM=MN,∴MN∥BP,∴四边形BMNP是平行四边形;(2)解:BM=MC.理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠ABC=∠C=90°,∴△ABM∽△MCQ,∴,∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴,∴,∴BM=MC.21、(1)a=4,k=﹣;(2)S=(0<m≤2)或S=﹣+m﹣1(2<m≤4)【分析】(1)先由函数图象变化的特点,得出m=2时的变化是三角形C点与A点重合时,从而得AC的值,进而得点A坐标,易求得点B坐标,从而问题易解得;
(2)当0<m≤2时,平移后的图形在x轴下方部分为图中△AA′N;2<m≤4时,平移后的图形在x轴下方部分的面积S为三角形ANA′的面积减去三角形AQC的面积.【详解】(1)从图2看,m=2时的变化是三角形C点与A点重合时,∴AC=2,又∵OA=AC∴A(2,0),∴k=﹣,由平移性质可知:∠FEM=∠FAM=∠DAC=∠BAO,从图中可知△EFM≌△AFM(AAS)∴AM=EM,∴AM=2,∴a=4;(2)当0<m≤2时,平移后的图形在x轴下方部分为图中△AA′N,则AA′=m,翻折及平移知,∠NAA′=∠NA′A,∴NA=NA′,过点N作NP⊥AA′于点P,则AP=A′P=,由(1)知,OB=1,OA=2,则tan∠OAB=,则tan∠NAA′=,∴NP==,∴S=×AA′×NP=×m×=2<m≤4时,如下图所示,可知CC′=m,AC′=m﹣2,AA′=m,同上可分别求得则AP=A′P=,NP==,C′Q=∴S=S△AA′N﹣S△AQC′=﹣(m﹣2)×=﹣+m﹣1综上,S关于m的解析式为:S=(0<m≤2)或S=﹣+m﹣1(2<m≤4)【点睛】本题为动点函数问题,属于一次函数、二次函数的综合问题,难度比较大,能从函数图象中获得信息是关键.22、游戏不公平,理由见解析.【分析】首先根据题意列表,然后由表格求得所有等可能的结果,由当概率相等时,这个游戏是否公平,即可求得答案.【详解】解:游戏不公平,理由如下:随机投掷两个筹码的结果列表如下:一二○△×(×,○)(×,△)○(○,○)(○,△)由上表可知,投掷筹码的结果共有4种,每种结果出现的可能性相同,其中,筹码朝上的一面都是“○”的结果有1种,其他结果有3种.即哥哥获得门票的概率为,弟弟获得门票的概率为.∵,∴游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23、(1);(2)【分析】(1)过点P作x轴的垂线,求出OP的长,由弧长公式可求出弧长;(2)作PA⊥x轴于A,QB⊥x轴于B,由旋转的性质得:∠POQ=90°,OQ=OP,由AAS证明△OBQ≌△PAO,得出OB=PA,QB=OA,由点P的坐标为(1,3),得出OB=PA=3,QB=OA=4,即可得出点Q的坐标.【详解】解:(1)过作轴于,∵,∴,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 着力构建泛在可及的终身教育体系
- 2025新译林版英语七年级下单词默写表
- 湖南部分学校2024-2025学年高三年级上册9月联考英语试题
- 公司年终总结会议通知-企业管理
- 2024年电离辐射计量标准器具项目投资申请报告代可行性研究报告
- 2025届高考英语二轮复习专项(中国日报新闻改编)时事新闻语法填空 (社会与体育)(3篇含答案)
- 强制清算中应注意的问题
- 强化硬件-拓展软件-细化预算管理工作
- 单选之连词 介词(解析版)
- 《电力数据资产高质量供给管理规范》
- 建设工程项目施工安全评价书(共10页)
- 机场助航灯光设计讲解
- 消毒记录台账
- 应急救援物资管理台账【精选文档】
- 随机过程教学大纲
- EPC项目—承包人实施方案__承包人实施计划
- 塑料门窗设计及组装技术规程
- 最新空白办健康证用工证明1页
- 工程结算书(完整版)
- SPECTRO直读光谱仪使用PPT学习教案
- 急性肾盂肾炎护理查房
评论
0/150
提交评论