版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>42.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如下图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为()A. B. C. D.4.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.55.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.6.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,与x轴交于A、B(-1,0),与y轴交于C.下列结论错误的是()A.二次函数的最大值为a+b+c B.4a-2b+c﹤0C.当y>0时,-1﹤x﹤3 D.方程ax2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.7.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.48.下列计算正确的是()A. B. C.÷ D.9.如果抛物线开口向下,那么的取值范围为()A. B. C. D.10.下列图形:任取一个是中心对称图形的概率是()A. B. C. D.111.我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中所有点在同一平面内≈1.41,≈1.73)A.60分钟 B.70分钟 C.80分钟 D.90分钟12.若点(2,3)在反比例函数y=的图象上,那么下列各点在此图象上的是()A.(-2,3) B.(1,5) C.(1,6) D.(1,-6)二、填空题(每题4分,共24分)13.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.14.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是_______.(填序号)15.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.16.已知关于的二次函数的图象如图所示,则关于的方程的根为__________17.已知反比例函数的图象经过点,则这个函数的表达式为__________.18.将一元二次方程用配方法化成的形式为________________.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,,D是AB的中点,过D点作AB的垂线交AC于点E,若BC=6,sinA=,求DE的长.20.(8分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.21.(8分)如图,是半径为的上的定点,动点从出发,以的速度沿圆周逆时针运动,当点回到地立即停止运动.(1)如果,求点运动的时间;(2)如果点是延长线上的一点,,那么当点运动的时间为时,判断直线与的位置关系,并说明理由.22.(10分)商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.(1)填表:每天的销售量/台每台销售利润/元降价前8400降价后(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?23.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD,DE.(1)求证:D是BC的中点(2)若DE=3,AD=1,求⊙O的半径.24.(10分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.25.(12分)如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.(1)AD=;(2)如图1,当GF=1时,求的值;(3)如图2,随点G位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.26.(1)问题发现:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是,位置关系是;(2)探究证明:如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段AD,BD,CD之间的等量关系,并证明;(3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,请直接写出AF的长.
参考答案一、选择题(每题4分,共48分)1、B【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.2、A【解析】∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.3、C【解析】两对对应点的连线的交点即为位似中心,连接OD、AC,交点为(2,2,)即位似中心为(2,2,);k=OA:CD=6:3=2,故选C.4、B【解析】先估算出的大小,再估算出+1的大小,从而得出整数n的值.【详解】∵2<<3,∴3<+1<4,∴整数n为3;故选:B.【点睛】本题主要考查算术平方根的估算,理解算术平方根的定义,是解题的关键.5、C【分析】根据弧长公式计算即可.【详解】解:该扇形的弧长=.故选C.【点睛】本题考查了弧长的计算:弧长公式:(弧长为l,圆心角度数为n,圆的半径为R).6、D【分析】A.根据对称轴为时,求得顶点对应的y的值即可判断;B.根据当时,函数值小于0即可判断;C.根据抛物线与轴的交点坐标即可判断.D.根据抛物线与直线的交点情况即可判断.【详解】A.∵当时,,根据图象可知,,正确.不符合题意;B.∵当时,,根据图象可知,,正确.不符合题意;C.∵抛物线是轴对称图形,对称轴是直线,点,所以与轴的另一个交点的坐标为,根据图象可知:当时,,正确.不符合题意;D.根据图象可知:抛物线与直线有两个交点,∴关于的方程有两个不相等的实数根,本选项错误,符合题意.故选:D.【点睛】本题考查了二次函数与系数的关系、根的判别式、抛物线与x轴的交点,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.7、C【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值为22,故答案为C.【点睛】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的8、C【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据完全平方公式对D进行判断.【详解】A、原式=2﹣,所以A选项错误;B、3与不能合并,所以B选项错误;C、原式==2,所以C选项正确;D、原式=3+4+4=7+4,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9、D【分析】由抛物线的开口向下可得不等式,解不等式即可得出结论.【详解】解:∵抛物线开口向下,∴,∴.故选D.【点睛】本题考查二次函数图象与系数的关系,解题的关键是牢记“时,抛物线向上开口;当时,抛物线向下开口.”10、C【解析】本题考查概率的计算和中心对称图形的概念,根据中心对称图形的概念可以判定①③④是中心对称图形,4个图形任取一个是中心对称的图形的概率为P=,因此本题正确选项是C.11、C【分析】如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.想办法求出AQ、CQ即可解决问题.【详解】解:如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.由题意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小伟从C出发到坡顶A的时间=≈80(分钟),故选:C.【点睛】本题考查了解直角三角形的应用,熟练掌握并灵活运用是解题的关键.12、C【解析】将(2,3)代入y=即可求出k的值,再根据k=xy解答即可.【详解】∵点(2,3)在反比例函数y=(k≠0)的图象上,∴k=xy=2×3=6,A、∵-2×3=-6≠6,∴此点不在函数图象上;B、∵1×5=5≠6,∴此点不在函数图象上;C、∵1×6=6,此点在函数图象上;D、∵1×(-6)=-6≠6,此点不在函数图象上.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.二、填空题(每题4分,共24分)13、60π【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(cm1).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.14、③【分析】根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.【详解】①、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;②、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;③、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;④、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;故答案为:③.【点睛】此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.15、1.【解析】试题分析:根据题目中的条件易证△ABP∽△CDP,由相似三角形对应边的比相等可得,即,解得CD=1m.考点:相似三角形的应用.16、0或-1【分析】求关于的方程的根,其实就是求在二次函数中,当y=4时x的值,据此可解.【详解】解:∵抛物线与x轴的交点为(-4,0),(1,0),∴抛物线的对称轴是直线x=-1.5,∴抛物线与y轴的交点为(0,4)关于对称轴的对称点坐标是(-1,4),
∴当x=0或-1时,y=4,即=4,即=0∴关于x的方程ax2+bx=0的根是x1=0,x2=-1.故答案为:x1=0,x2=-1.【点睛】本题考查的是二次函数与一元二次方程的关系,能根据题意利用数形结合把求出方程的解的问题转化为二次函数的问题是解答此题的关键.17、【分析】把点的坐标代入根据待定系数法即可得解.【详解】解:∵反比例函数y=经过点M(-3,2),
∴2=,
解得k=-6,
所以,反比例函数表达式为y=.
故答案为:y=.【点睛】本题考查了待定系数法求反比例函数解析式,是求函数解析式常用的方法,需要熟练掌握并灵活运用.18、【分析】把方程常数项移到右边,两边加上1,变形得到结果,即可得到答案.【详解】解:由方程,变形得:,配方得:,即;故答案为.【点睛】此题考查了解一元二次方程——配方法,熟练掌握完全平方公式是解本题的关键.三、解答题(共78分)19、【分析】先在Rt△ACB中利用三角函数求出AB长,根据勾股定理求出AC的长,再通过证△ADE∽△ACB,利用对应边成比例即可求.【详解】解:∵BC=6,sinA=,∴AB=10,∴AC==8,∵D是AB的中点,∴AD=AB=5,∵∠ADE=∠C=90°,∠A=∠A∴△ADE∽△ACB,∴=,即=,解得:DE=.【点睛】本题考查三角函数和相似三角形的判定与性质的应用,解直角三角形和利用相似三角形对应边成比例均是求线段长度的常用方法.20、(1)抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)﹣3<m<﹣1(3)当m=﹣时,S最大=【解析】分析:(1)与x轴相交令y=0,解一元二次方程求解;(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围.(3)在(2)的基础上表示△ABO的面积,根据二次函数性质求m.详解:(1)当m=﹣2时,抛物线解析式为:y=x2+4x+2令y=0,则x2+4x+2=0解得x1=﹣2+,x2=﹣2﹣抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2∴抛物线顶点坐标为A(m,2m+2)∵二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)∴当直线1在x轴上方时><不等式无解当直线1在x轴下方时解得﹣3<m<﹣1(3)由(1)点A在点B上方,则AB=(2m+2)﹣(m﹣1)=m+3△ABO的面积S=(m+3)(﹣m)=﹣∵﹣<0∴当m=﹣时,S最大=点睛:本题以含有字母系数m的二次函数为背景,考查了二次函数图象性质以及分类讨论、数形结合的数学思想.21、(1)或(2)直线与相切,理由见解析【分析】(1)当∠POA=90°时,点P运动的路程为⊙O周长的或,所以分两种情况进行分析;
(2)直线BP与⊙O的位置关系是相切,根据已知可证得OP⊥BP,即直线BP与⊙O相切.【详解】解:(1)当∠POA=90°时,根据弧长公式可知点P运动的路程为⊙O周长的或,设点P运动的时间为ts;
当点P运动的路程为⊙O周长的时,2π•t=•2π•12,
解得t=3;
当点P运动的路程为⊙O周长的时,2π•t=•2π•12,
解得t=9;
∴当∠POA=90°时,点P运动的时间为3s或9s.
(2)如图,当点P运动的时间为2s时,直线BP与⊙O相切
理由如下:
当点P运动的时间为2s时,点P运动的路程为4πcm,
连接OP,PA;
∵半径AO=12cm,
∴⊙O的周长为24πcm,
∴的长为⊙O周长的,
∴∠POA=60°;
∵OP=OA,
∴△OAP是等边三角形,
∴OP=OA=AP,∠OAP=60°;
∵AB=OA,
∴AP=AB,
∵∠OAP=∠APB+∠B,
∴∠APB=∠B=30°,
∴∠OPB=∠OPA+∠APB=90°,
∴OP⊥BP,
∴直线BP与⊙O相切.【点睛】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.22、(1),;(2)1.【分析】(1)利润=一台冰箱的利润×销售数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量会提高;(2)根据每台的利润×销售数量列出函数关系式,再根据二次函数的性质,求利润的最大值.【详解】解:(1)降价后销售数量为;降价后的利润为:400-x,故答案为:,;(2)设总利润为y元,则∵,开口向下∴当时,最大此时售价为(元)答:每台冰箱的实际售价应定为1元时,利润最大.【点睛】本题考查了二次函数的实际应用中的销售问题,解题的关键是分析题意,找出关键的等量关系,列出函数关系式.23、(1)证明见解析;(2)【分析】(1)根据圆周角定理、等腰三角形的三线合一的性质即可证得结论;(2)根据圆周角定理及等腰三角形的判定得到DE=BD=3,再根据勾股定理求出AB,即可得到半径的长.【详解】(1)∵AB是⊙O直径∴∠ADB=90°,在△ABC中,AB=AC,∴DB=DC,即点D是BC的中点;(2)∵AB=AC,∴∠B=∠C,又∠B=∠E,∴∠C=∠E,∴DE=DC,∵DC=BD,∴DE=BD=3,∵AD=1,又∠ADB=90°,∴AB=,∴⊙O的半径=.【点睛】此题考查圆周角定理,等腰三角形的三线合一的性质及等角对等边的判定,勾股定理.24、(1)x1=2,x2;(2)x1=1或x2=2.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)提取公因式x后,求出方程的解即可;【详解】解:(1)2x2﹣7x+2=1,(x﹣2)(2x﹣1)=1,∴x﹣2=1或2x﹣1=1,∴x1=2,x2;(2)x2﹣2x=1,x(x﹣2)=1,x1=1或,x2=2.【点睛】本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.25、(1)AD=;(2);(3)FG+EG是一个定值,为.【分析】(1)先由勾股定理求出BC的长,再由直角三角形斜边中线的性质可求出AD的长;(2)先证FG=CG=1,通过BD=CDBC=AD,求出BG的长,再证△BGE∽△BDA,利用相似三角形的性质可求出的值;(3)由(2)知FG=CG,再证EG=BG,即可证FG+EG=BC=2.【详解】(1)∵∠BAC=90°,且BD=CD,∴ADBC.∵BC2,∴AD2.故答案为:;(2)如图1.∵GF∥AD,∴∠CFG=∠CAD.∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年树木移植与销售服务合同范本3篇
- 二零二五年房地产租赁市场竞价管理合同3篇
- 二零二五年度互联网广告投放合同补充条款4篇
- 物业服务商与商户就2025年度物业管理服务签订的协议2篇
- 二零二五版净水器品牌授权及市场推广合同3篇
- 二零二五版合同标的知识产权补充保护条款追加协议2篇
- 2025年度教育资源共享平台居间合作合同样本4篇
- 2025年度变压器行业质量检测与认证合同4篇
- 二零二五年度标准化厂房建设与运营一体化合同范本3篇
- 二零二五版幼儿教育机构合作办学协议3篇
- 2024-2025学年八年级上学期1月期末物理试题(含答案)
- 2025年国新国际投资有限公司招聘笔试参考题库含答案解析
- 制造车间用洗地机安全操作规程
- 2025河南省建筑安全员-A证考试题库及答案
- 商场电气设备维护劳务合同
- 油气田智能优化设计-洞察分析
- 陕西2020-2024年中考英语五年真题汇编学生版-专题09 阅读七选五
- 砖混结构基础加固技术方案
- 助产专业的职业生涯规划
- 2023年国家公务员录用考试《行测》真题(行政执法)及答案解析
- 新《国有企业管理人员处分条例》知识竞赛考试题库500题(含答案)
评论
0/150
提交评论