浙江温州第十二中学2022年数学九年级第一学期期末经典试题含解析_第1页
浙江温州第十二中学2022年数学九年级第一学期期末经典试题含解析_第2页
浙江温州第十二中学2022年数学九年级第一学期期末经典试题含解析_第3页
浙江温州第十二中学2022年数学九年级第一学期期末经典试题含解析_第4页
浙江温州第十二中学2022年数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若二次函数的x与y的部分对应值如下表,则当时,y的值为xy353A.5 B. C. D.2.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有()箱.A.2 B.3 C.4 D.53.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为()A. B. C. D.4.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:25.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有()A.1个B.2个C.3个D.4个6.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④c=﹣3a,其中正确的命题是()A.①② B.②③ C.①③ D.①③④7.如图,在中,点在边上,且,,过点作,交边于点,将沿着折叠,得,与边分别交于点.若的面积为,则四边形的面积是()A. B. C. D.8.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A. B.C. D.9.函数和在同一坐标系中的图象大致是()A. B. C. D.10.下列图形中,是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,点在函数的图象上,直线分别与轴、轴交于点,且点的横坐标为4,点的纵坐标为,则的面积是________.12.如图,等边边长为2,分别以A,B,C为圆心,2为半径作圆弧,这三段圆弧围成的图形就是著名的等宽曲线——鲁列斯三角形,则该鲁列斯三角形的面积为___________.13.在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,……顺次这样做下去,第2020个等边三角形的边长为______.14.如图,四边形内接于,若,_______.15.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________.16.如图,菱形ABCD和菱形ECGF的边长分别为2和3,点D在CE上,且∠A=120°,B,C,G三点在同一直线上,则BD与CF的位置关系是_____;△BDF的面积是_____.17.如图,抛物线解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2…;则点Pn的坐标是_____.18.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.三、解答题(共66分)19.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.20.(6分)某企业为了解饮料自动售卖机的销售情况,对甲、乙两个城市的饮料自动售卖机进行抽样调查,从两个城市中所有的饮料自动售卖机中分别抽取16台,记录下某一天各自的销售情况(单位:元)如下:甲:25、45、2、22、10、28、61、18、2、45、78、45、58、32、16、78乙:48、52、21、25、33、12、42、1、41、42、33、44、33、18、68、72整理、描述数据:对销售金额进行分组,各组的频数如下:销传金额甲3643乙26ab分析数据:两组样本数据的平均数、中位数如下表所示:城市中位数平均数众数甲C1.845乙402.9d请根据以上信息,回答下列问题:(1)填空:a=,b=,c=,d=.(2)两个城市目前共有饮料自动售卖机4000台,估计日销售金额不低于40元的数量约为多少台?(3)根据以上数据,你认为甲、乙哪个城市的饮料自动售卖机销售情况较好?请说明理由(一条理由即可).21.(6分)天猫商城某网店销售童装,在春节即将将来临之际,开展了市场调查发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件;如果每件童装降价1元,那么平均每天可售出2件.(1)假设每件童装降价元时,每天可销售件,每件盈利元;(用含人代数式表示)(2)每件童装降价多少元时,平均每天盈利最多?每天最多盈利多少元?22.(8分)如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.23.(8分)某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.24.(8分)如图,抛物线与轴交于,两点.(1)求该抛物线的解析式;(2)若抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由25.(10分)尺规作图:已知△ABC,如图.(1)求作:△ABC的外接圆⊙O;(2)若AC=4,∠B=30°,则△ABC的外接圆⊙O的半径为.26.(10分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现阶梯上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水平距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.

参考答案一、选择题(每小题3分,共30分)1、D【分析】由表可知,抛物线的对称轴为,顶点为,再用待定系数法求得二次函数的解析式,再把代入即可求得y的值.【详解】设二次函数的解析式为,当或时,,由抛物线的对称性可知,,,把代入得,,二次函数的解析式为,当时,.故选D.【点睛】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为,顶点为,是本题的关键.2、B【分析】先计算出这些水果的总质量,再根据剩下的足球与篮球的数量关系,通过推理判断出拿走的篮球的个数,从而计算出剩余篮球的个数.【详解】解:∵8+9+16+20+22+27=102(个)根据题意,在剩下的五箱球中,足球的数量是篮球的2倍,∴剩下的五箱球中,篮球和足球的总个数是3的倍数,由于102是3的倍数,所以拿走的篮球个数也是3的倍数,只有9和27符合要求,假设拿走的篮球的个数是9个,则(102-9)÷3=31,剩下的篮球是31个,由于剩下的五个数中,没有哪两个数的和是31个,故拿走的篮球的个数不是9个,假设拿走的篮球的个数是27个,则(102-27)÷3=25,剩下的篮球是25个,只有9+16=25,所以剩下2箱篮球,故这六箱球中,篮球有3箱,故答案为:B.【点睛】本题主要考查的是学生能否通过初步的分析、比较、推理得出正确的结论,培养学生有顺序、全面思考问题的意识.3、A【分析】先根据角平分线的定义、圆周角定理可得,再根据相似三角形的判定定理得出,然后根据相似三角形的性质即可得.【详解】平分弧BD与弧CD相等又,即解得故选:A.【点睛】本题考查了角平分线的定义、圆周角定理、相似三角形的判定定理与性质,利用圆周角定理找到两个相似三角形是解题关键.4、B【详解】∵四边形ABCD是平行四边形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故选B5、C【解析】试题解析:∵∠BDO=∠BEA=90°,∠DBO=∠EBA,∴△BDO∽△BEA,∵∠BOD=∠COE,∠BDO=∠CEO=90°,∴△BDO∽△CEO,∵∠CEO=∠CDA=90°,∠ECO=∠DCA,∴△CEO∽△CDA,∴△BDO∽△BEA∽△CEO∽△CDA.故选C.6、D【分析】①观察图象可得,当x=1时,y=0,即a+b+c=0;②对称轴x=﹣1,即﹣=﹣1,b=2a;③抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,即可得ax2+bx+c=0的两根分别为﹣3和1;④当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,即可得c=﹣3a.【详解】解:观察图象可知:①当x=1时,y=0,即a+b+c=0,∴①正确;②对称轴x=﹣1,即﹣=﹣1,b=2a,∴②错误;③∵抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0)∴ax2+bx+c=0的两根分别为﹣3和1,∴③正确;④∵当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,∴c=﹣3a,∴④正确.所以正确的命题是①③④.故选:D.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.7、B【分析】由平行线的性质可得,,可设AH=5a,HP=3a,求出S△ADE=,由平行线的性质可得,可得S△FGM=2,再利用S四边形DEGF=S△DEM-S△FGM,即可得到答案.【详解】解:如图,连接AM,交DE于点H,交BC于点P,

∵DE∥BC,

∴,∴∵的面积为∴S△ADE=×32=设AH=5a,HP=3a

∵沿着折叠

∴AH=HM=5a,S△ADE=S△DEM=

∴PM=2a,

∵DE∥BC

∴S△FGM=2∴S四边形DEGF=S△DEM-S△FGM=-2=

故选:B.【点睛】本题考查了折叠变换,平行线的性质,相似三角形的性质,熟练运用平行线的性质是本题的关键.8、A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.9、D【解析】试题分析:当k<0时,反比例函数过二、四象限,一次函数过一、二、四象限;当k>0时,反比例函数过一、三象限,一次函数过一、三、四象限.故选D.考点:1.反比例函数的图象;2.一次函数的图象.10、D【分析】根据中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,逐一判断即可.【详解】解:A选项不是中心对称图形,故本选项不符合题意;B选项不是中心对称图形,故本选项不符合题意;C选项不是中心对称图形,故本选项不符合题意;D选项是中心对称图形,故本选项符合题意;故选D.【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】作EC⊥x轴于C,EP⊥y轴于P,FD⊥x轴于D,FH⊥y轴于H,由题意可得点A,B的坐标分别为(4,0),B(0,),利用待定系数法求出直线AB的解析式,再联立反比例函数解析式求出点,F的坐标.由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【详解】解:如图,作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,

由题意可得点A,B的坐标分别为(4,0),B(0,),由点B的坐标为(0,),设直线AB的解析式为y=kx+,将点A的坐标代入得,0=4k+,解得k=-.∴直线AB的解析式为y=-x+.联立一次函数与反比例函数解析式得,,解得或,即点E的坐标为(1,2),点F的坐标为(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,

∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案为:.【点睛】本题为一次函数与反比例函数的综合题,考查了反比例函数k的几何意义、一次函数解析式的求法,两函数交点问题,掌握反比例函数图象上点的坐标特征、反比例函数的比例系数k的几何意义,利用转化法求面积是解决问题的关键.12、【分析】求出一个弓形的面积乘3再加上△ABC的面积即可.【详解】过A点作AD⊥BC,∵△ABC是等边三角形,边长为2,∴AC=BC=2,CD=BC=1∴AD=∴弓形面积=.故答案为:【点睛】本题考查的是阴影部分的面积,掌握扇形的面积计算及等边三角形的面积计算是关键.13、【分析】由题意利用一次函数的性质以及等边三角形性质结合相似三角形的性质进行综合分析求解.【详解】解:将代入分别两个解析式可以求出AO=1,∵为边作第一个等边三角形,∴BO=1,过B作x轴的垂线交x轴于点D,由可得,即,∴,,即B的横轴坐标为,∵与轴平行,∴将代入分别两个解析式可以求出,∵,∴,即相邻两个三角形的相似比为2,∴第2020个等边三角形的边长为.故答案为:.【点睛】本题考查一次函数图形的性质以及等边三角形性质和相似三角形的性质的综合问题,熟练掌握相关知识并运用数形结合思维分析是解题的关键.14、【分析】根据圆内接四边形的对角互补,即可求得答案.【详解】∵四边形ABCD是⊙O的内接四边形,

∴.

故答案为:.【点睛】主要考查圆内接四边形的性质及圆周角定理.15、【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,

故从中任取一个数,则恰为奇数的概率是

故答案为:.【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.16、平行【分析】由菱形的性质易求∠DBC=∠FCG=30°,进而证明BD∥CF;设BF交CE于点H,根据菱形的对边平行,利用相似三角形对应边成比例列式求出CH,然后求出DH以及点B到CD的距离和点G到CE的距离,最后根据三角形的面积公式列式进行计算即可得解.【详解】解:∵四边形ABCD和四边形ECGF是菱形,∴AB∥CE,∵∠A=120°,∴∠ABC=∠ECG=60°,∴∠DBC=∠FCG=30°,∴BD∥CF;如图,设BF交CE于点H,∵CE∥GF,∴△BCH∽△BGF,∴=,即=,解得:CH=1.2,∴DH=CD﹣CH=2﹣1.2=0.8,∵∠A=120°,∠ABC=∠ECG=60°,∴点B到CD的距离为2×=,点G到CE的距离为3×=,∴阴影部分的面积=.故答案为:平行;.【点睛】本题考查了菱形的性质,相似三角形的判定和性质以及解直角三角形,求出DH的长度以及点B到CD的距离和点G到CE的距离是解题的关键.17、(0,n2+n)【分析】根据待定系数法分别求得直线OA1、A2B1、A2B2……的解析式,即可求得P1、P2、P3…的坐标,得出规律,从而求得点Pn的坐标.【详解】解:∵点A1的坐标为(1,1),∴直线OA1的解析式为y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),设A1P1的解析式为y=kx+b1,∴,解得,∴直线A1P1的解析式为y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,设B1P2的解析式为y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)设A1B2的解析式为y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴Pn(0,n2+n),故答案为(0,n2+n).【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据一次函数图象上点的坐标特征得出规律是解题的关键.18、1【解析】分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=1.故答案为1.点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.三、解答题(共66分)19、(1)抛物线的解析式为:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).解得:,∴抛物线的解析式为:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴抛物线的对称轴是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x轴于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)当y=0时,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+1.如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1时,S四边形CDBF的面积最大=,∴E(1,1).考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值20、(1)6,2,2,33(2)1875(3)见解析(答案不唯一)【分析】(1)根据某一天各自的销售情况求出的值,根据中位数的定义求出的值,根据众数的定义求出的值.(2)用样本估算整体的方法去计算即可.(3)根据平均数、众数、中位数的性质判断即可.【详解】(1).(2)(台)故估计日销售金额不低于40元的数量约为1875台.(3)可以推断出甲城市的饮料自动售货机销售情况较好,理由如下:①甲城市饮料自动售货机销售金额的平均数较高,表示甲城市的销售情况较好;②甲城市饮料自动售货机销售金额的众数较高,表示甲城市的销售金额较高;可以推断出乙城市的饮料自动售货机销售情况较好,理由如下:①乙城市饮料自动售货机销售金额的中位数较高,表示乙城市销售金额高的自动售货机数量较多;【点睛】本题考查了概率统计的问题,掌握平均数、众数、中位数的性质、样本估算整体的方法是解题的关键.21、(1)20+2x,;(2)降价为15元时,盈利最多为1250元【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价-进价,列式即可;(2)把函数关系式化为顶点式,根据二次函数的性质即可得到结论.【详解】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,

故答案为:(20+2x),(40-x);(2)设每件童装降价x元,盈利y元,

根据题意得,y=(20+2x)(40-x)=-2x2+60x+800=-2(x-15)2+1250,

答:每件童装降价15元时,每天可获得最多盈利,最多盈利是1250元.【点睛】本题主要考查一元二次方程和二次函数的应用,根据题意列出函数表达式并熟练运用性质是解决问题的关键.22、(1)见解析;(2)AD=2.【分析】(1)作OE⊥AB,先由∠AOD=∠BAD求得∠ABD=∠OAD,再由∠BCO=∠D=90°及∠BOC=∠AOD求得∠OBC=∠OAD=∠ABD,最后证△BOC≌△BOE得OE=OC,依据切线的判定可得;(2)先求得∠EOA=∠ABC,在Rt△ABC中求得AC=8,AB=10,由切线长定理知BE=BC=6,AE=4,OE=3,继而得BO=3,根据相似三角形的性质即可得出结论.【详解】解:(1)过点O作OE⊥AB于点E,∵O为∠MBN角平分线上一点,∴∠ABD=∠CBD,又∵BC为⊙O的切线,∴AC⊥BC,∵AD⊥BO于点D,∴∠D=90°,∴∠BCO=∠D=90°,∵∠BOC=∠AOD,∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,∵∠AOD=∠BAD,∴∠ABD=∠OAD,∴∠OBC=∠OAD=∠ABD,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切线;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC•tan∠ABC=8,则AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴,即,∴AD=2.故答案为:AD=2.【点睛】本题主要考查了切线的判定与性质.解题的关键是掌握切线的判定,切线长定理,全等与相似三角形的判定与性质及解直角三角形的应用.23、y=-0.4x2+4【分析】根据题意设抛物线的表达式为y=ax2+4(),代入(-2,2.4),即可求出a.【详解】解:设y=ax2+4()∵图象经过(-2,2.4)∴4a+4=2.4a=-0.4∴表达式为y=-0.4x2+4【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.24、(1);(2)存在,当的周长最小时,点的坐标为.【分析】(1)直接利用待定系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论