版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.抛物线y=x2﹣4x+1与y轴交点的坐标是()A.(0,1) B.(1,O) C.(0,﹣3) D.(0,2)2.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.113.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+34.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC5.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x26.抛物线y=(x﹣1)2﹣2的顶点是()A.(1,﹣2) B.(﹣1,2) C.(1,2) D.(﹣1,﹣2)7.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为()A.3 B.﹣3 C.13 D.﹣138.将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为()A.y=2(x﹣1)2+3 B.y=﹣2(x+3)2+1C.y=2(x﹣3)2﹣1 D.y=2(x+3)2+19.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为()A. B. C. D.10.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是()A.①②③④ B.④①③② C.④②③① D.④③②①二、填空题(每小题3分,共24分)11.一棵参天大树,树干周长为3米,地上有一根常春藤恰好绕了它5圈,藤尖离地面20米高,那么这根常春藤至少有____米.12.如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为_________.13.如图,某海防响所发现在它的西北方向,距离哨所400米的处有一般船向正东方向航行,航行一段时间后到达哨所北偏东方向的处,则此时这般船与哨所的距离约为________米.(精确到1米,参考数据:,)14.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.15.二次函数,当时,y随x的增大而减小,则m的取值范围是__________.16.如图,在中,,点D、E分别在边、上,且,如果,,那么________.17.如图,由边长为1的小正方形组成的网格中,点为格点(即小正方形的顶点),与相交于点,则的长为_________.18.我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池,丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑,内方圆径若能知,堪作算中第一.”其大意为:有一块圆形的田,中间有一块正方形水池,测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远.如果你能求出正方形的边长是x步,则列出的方程是_______________.三、解答题(共66分)19.(10分)已知关于x的一元二次方程:2x2+6x﹣a=1.(1)当a=5时,解方程;(2)若2x2+6x﹣a=1的一个解是x=1,求a;(3)若2x2+6x﹣a=1无实数解,试确定a的取值范围.20.(6分)如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)21.(6分)如图,在平面直角坐标系中,点P(﹣1,m)是双曲线y=上的一个点,过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1.(1)求m的值和双曲线对应的函数表达式;(2)若经过点P的一次函数y=kx+b(k≠0、b≠0)的图象与x轴交于点A,与y交于点B且PB=2AB,求k的值.22.(8分)已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.(1)画出关于原点成中心对称的,并写出点的坐标;(2)画出将绕点按顺时针旋转所得的.23.(8分)如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了ts.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在时刻某个t,使S△DOP=S△PCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,△DPQ是以DQ为腰的等腰三角形?24.(8分)解方程:(1)2x2﹣7x+3=0(2)7x(5x+2)=6(5x+2)25.(10分)解方程:4x2﹣2x﹣1=1.26.(10分)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.
参考答案一、选择题(每小题3分,共30分)1、A【分析】抛物线与y轴相交时,横坐标为0,将横坐标代入抛物线解析式可求交点纵坐标.【详解】解:当x=0时,y=x2-4x+1=1,
∴抛物线与y轴的交点坐标为(0,1),
故选A.【点睛】本题考查了抛物线与坐标轴交点坐标的求法.令x=0,可到抛物线与y轴交点的纵坐标,令y=0,可得到抛物线与x轴交点的横坐标.2、A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.3、B【解析】解:∵将抛物线y=﹣(x+1)2+1向右平移2个单位,∴新抛物线的表达式为y=﹣(x+1﹣2)2+1=﹣(x﹣1)2+1.故选B.4、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.5、B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时,y=ax2+bx+c=bx+c,不是二次函数,故不符合题意;B.y=x(x﹣1)=x2-x,是二次函数,故符合题意;C.的自变量在分母中,不是二次函数,故不符合题意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.6、A【分析】根据顶点式的坐标特点直接写出顶点坐标即可解决.【详解】解:∵y=(x﹣1)2﹣2是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,﹣2).故选:A.【点睛】本题考查了顶点式,解决本题的关键是正确理解二次函数顶点式中顶点坐标的表示方法.7、B【分析】
【详解】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1+x2=﹣4,x1x2=a.∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+1=0,解得,a=﹣1.故选B8、D【分析】根据二次函数图像的平移法则进行推导即可.【详解】解:将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为y=2(x+3)2+2﹣1,即y=2(x+3)2+1.故选:D.【点睛】本题考查了二次函数图像的平移,掌握并灵活运用“上加下减,左加右减”的平移原则是解题的关键.9、A【分析】由可得∠APB=90°,根据AB是定长,由定长对定角可知P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,用DO减去圆的半径即可得出最小值.【详解】解:∵,∴∠APB=90°,∵AB=6是定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,如图所示:∵,,∴,由勾股定理得:DO=5,∴,即的长的最小值为2,故选A.【点睛】本题属于综合难题,主要考查了直径所对的角是圆周角的应用:由定弦对定角可得动点的轨迹是圆,发现定弦和定角是解题的关键.10、B【分析】北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.【详解】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北−北−东北−东,即④①③②故选:B.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西−西北−北−东北−东,影长由长变短,再变长.二、填空题(每小题3分,共24分)11、25【分析】如下图,先分析常春藤一圈展开图,求得常春藤一圈的长度后,再求总长度.【详解】如下图,是常春藤恰好绕树的图形∵绕5圈,藤尖离地面20米∴常春藤每绕1圈,对应的高度为20÷5=4米我们将绕树干1圈的图形展开如下,其中,AB表示树干一圈的长度,AC表示常春藤绕树干1圈的高度,BC表示常春藤绕树干一圈的长度∴在Rt△ABC中,BC=5∴常春藤总长度为:5×5=25米故答案为:25【点睛】本题考查侧面展开图的运算,解题关键是将题干中的树干展开为如上图△ABC的形式.12、4【分析】作AE⊥x轴于点E,BD⊥x轴于点D得出△OBD∽△OAE,根据面积比等于相似比的平方结合反比例函数的几何意义求出,再利用条件“AO=AC”得出,进而分别求出和相减即可得出答案.【详解】作AE⊥x轴于点E,BD⊥x轴于点D∴△OBD∽△OAE∴根据反比例函数的几何意义可得:,∴∵AO=AC∴OE=EC∴∴,∴故答案为4.【点睛】本题考查的是反比例函数与几何的综合,难度系数较大,需要熟练掌握反比例函数的几何意义.13、566【分析】通过解直角△OAC求得OC的长度,然后通过解直角△OBC求得OB的长度即可.【详解】设与正北方向线相交于点,根据题意,所以,在中,因为,所以,中,因为,所以(米).故答案为566.【点睛】考查了解直角三角形的应用-方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.14、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【点睛】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.15、【分析】先根据二次函数的解析式判断出函数的开口方向,再由当时,函数值y随x的增大而减小可知二次函数的对称轴,故可得出关于m的不等式,求出m的取值范围即可.【详解】解:∵二次函数,a=−1<0,∴抛物线开口向下,∵当时,函数值y随x的增大而减小,∴二次函数的对称轴,即,解得,故答案为:.【点睛】本题考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.16、【分析】根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.17、【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案为:【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.18、【分析】根据圆的面积-正方形的面积=可耕地的面积即可解答.【详解】解:∵正方形的边长是x步,圆的半径为()步∴列方程得:.故答案为.【点睛】本题考查圆的面积计算公式,解题关键是找出等量关系.三、解答题(共66分)19、(1),;(2)a=8;(3)【分析】(1)将a的值代入,再利用公式法求解可得;(2)将x=1代入方程,再求a即可;(3)由方程无实数根得出△=62﹣4×2(﹣a)<1,解之可得.【详解】解:(1)当a=5时,方程为2x2+6x﹣5=1,∴,∴,解得:,;(2)∵x=1是方程2x2+6x﹣a=1的一个解,∴2×12+6×1﹣a=1,∴a=8;(3)∵2x2+6x﹣a=1无实数解,∴△=62﹣4×2(﹣a)=36+8a<1,解得:.【点睛】本题主要考查一元二次方程的解、解一元二次方程以及一元二次方程根的判别式的意义,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2−4ac有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1时,方程无实数根.20、大树的高约为6.0米.【分析】作CM⊥DB于点M,已知BC的坡度即可得到BM和CM的比值,在Rt△MBC中,利用勾股定理即可求得BM和MC的长度,再在Rt△DCM中利用三角函数求得DM的长,由BD=BM+DM即可求得大树BD的高.【详解】作CM⊥DB于点M,∵斜坡AF的坡度是1::2.4,∠A=∠BCM,∴==,∴在直角△MBC中,设BM=5x,则CM=12x.由勾股定理可得:BM2+CM2=BC2,∴(5x)2+(12x)2=6.52,解得:x=,∴BM=5x=,CM=12x=6,在直角△MDC中,∠DCM=∠EDG=30°,∴DM=CM•tan∠DCM=6tan30°=6×=2,∴BD=DM+BM=+2≈2.5+2×1.732≈6.0(米).答:大树的高约为6.0米.【点睛】本题考查了解直角三角形的应用,正确作出辅助线,构造直角三角形模型是解决问题的关键.21、(1)m=6,y=﹣;(2)k=﹣4或﹣2.【分析】(1)根据反比例函数k的几何意义,求出n的值即可解决问题;(2)分1种情形讨论,①当点A在x轴正半轴上时,由OB∥PQ,可得OB:PQ=AB:AP=1:1,继而求出OB=2,即B(0,2),待定系数法求一次函数解析式即可;②当点A在x轴负半轴上时,由于PB=2AB,显然这种情形不存在;③当点B在y轴负半轴上时,由于PB=2AB,可得PA=PB,根据PQ∥OB,可得,即QA=AO=,求出A(﹣,0),待定系数法求一次函数解析式即可.【详解】(1)∵过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1,∴,∵n<0,∴n=﹣6,∴反比例函数的解析式为y=﹣,∴P(﹣1,6),∴m=6,y=﹣.(2)①当点A在x轴正半轴上时,∵OB∥PQ,∴OB:PQ=AB:AP=1:1,∴OB=2,∴B(0,2),把P(﹣1,6),B(0,2)代入y=kx+b中得到,解得.②当点A在x轴负半轴上时,∵PB=2AB,显然这种情形不存在.③当点B在y轴负半轴上时,∵PB=2AB,∴PA=PB,∵PQ∥OB,∴,∴QA=AO=,∴A(﹣,0),把P(﹣1,6),A(﹣,0)代入y=kx+b中得到,解得,综上所述,k=﹣4或﹣2.【点睛】本题主要考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题.22、(1)如图所示,即为所求,见解析,点的坐标为;(2)如图所示,即为所求.见解析.【解析】分别作出三顶点关于原点的对称点,再顺次连接即可得;
分别作出点、绕点按顺时针旋转所得的对应点,再顺次连接即可得.【详解】解:(1)如图所示,即为所求,其中点的坐标为.(2)如图所示,即为所求.【点睛】此题主要考查了图形的旋转变换,正确得出对应点位置是解题关键.23、(1)D(1,4);(1);(3)存在,t的值为1;(4)当或或时,△DPQ是一个以DQ为腰的等腰三角形【分析】(1)由题意得出点D的纵坐标为4,求出y=1x中y=4时x的值即可得;(1)由PQ∥OD证△CPQ∽△COD,得,即,解之可得;(3)分别过点Q、D作QE⊥OC,DF⊥OC交OC与点E、F,对于直线y=1x,令y=4求出x的值,确定出D坐标,进而求出BD,BC的长,利用勾股定理求出CD的长,利用两对角相等的三角形相似得到三角形CQE与三角形CDF相似,由相似得比例表示出QE,由底PC,高QE表示出三角形PQC面积,再表示出三角形ODP面积,依据S△DOP=S△PCQ列出关于t的方程,解之可得;(4)由三角形CQE与三角形CDF相似,利用相似得比例表示出CE,PE,进而利用勾股定理表示出PQ1,DP1,以及DQ,分两种情况考虑:①当DQ=DP;②当DQ=PQ,求出t的值即可.【详解】解:(1)∵OA=4∴把代入得∴D(1,4).(1)在矩形OABC中,OA=4,OC=5∴AB=OC=5,BC=OA=4∴BD=3,DC=5由题意知:DQ=PC=t∴OP=CQ=5t∵PQ∥OD∴∴∴.(3)分别过点Q、D作QE⊥OC,DF⊥OC交OC与点E、F则DF=OA=4∴DF∥QE∴△CQE∽△CDF∴∴∴∵S△DOP=S△PCQ∴∴,当t=5时,点P与点O重合,不构成三角形,应舍去∴t的值为1.(4)∵△CQE∽△CDF∴∴∴①当时,,解之得:②当时,解之得:答:当或或时,△DPQ是一个以DQ为腰的等腰三角形.【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.24、(1);(2)【分析】(1)方程左边的多项式利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家安全教育课程
- 2025年度跨境电商平台合同变更函
- 2025年度浴池能源管理承包服务合同
- 二零二五年度客货两用船运输合同及行李处理协议
- 2025年度汽车维修配件销售协议书合同
- 2025年度股东债权转化为注册资本协议:助力中小企业发展的融资合同
- 2025年度生态宜居购房优惠合同
- 孕产妇村医培训
- 志愿服务伴你行团日活动
- 广告校园安全教育
- TSGD7002-2023-压力管道元件型式试验规则
- 2024年度家庭医生签约服务培训课件
- 建筑工地节前停工安全检查表
- 了不起的狐狸爸爸-全文打印
- 国际经济学国际贸易的标准理论
- 8D报告培训教材(PPT 47页)
- -居民死亡医学证明(推断)书
- 糖尿病酮症酸中毒病例讨论-文档资料
- 液相色谱质谱质谱仪LCMSMSSYSTEM
- 民办非企业单位章程核准表-空白表格
- 派克与永华互换表
评论
0/150
提交评论