有机朗肯循环中低温余热发电技术课件_第1页
有机朗肯循环中低温余热发电技术课件_第2页
有机朗肯循环中低温余热发电技术课件_第3页
有机朗肯循环中低温余热发电技术课件_第4页
有机朗肯循环中低温余热发电技术课件_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

有机朗肯循环(ORC)中低温余热发电技术介绍天津大学机械工程学院李惟毅liwy@2014.11.5有机朗肯循环(ORC)中低温余热发电技术介绍

能源危机!中低品位热能的回收利用受到重视!如何有效地回收利用中低品位热能?技术应用背景

能源危机!如何有效地回收利用中低品位热能?技术应用背景

技术应用背景余热余压利用工程是我国《节能中长期发展专项规划》中的十大重点节能工程之一。目前在我国工业的各个领域中存在大量的低温余热资源(350℃以下,低压或常压),由于缺乏有效的技术手段而没有得到充分利用,传统发电技术的工作参数大多为高参数、大容量,无法利用这部分较为分散但总量巨大的能源。而利用有机工质朗肯循环,开发新型、高效的低温余热发电系统,对于提高我国能源利用率、节能减排,保护环境具有重要的意义。技术应用背景余热余压利用工程是我国《节能中目前我国能源形势严峻的根本原因在于用能效率低下。我国每吨标准煤的产出效率仅相当于日本的10.3%、美国的28.6%。我国工业用能中近60-65%的能源转化为余热资源,其中温度低于350℃以下的低温余热,约占余热总量的60%,目前技术实现对其有效的回收利用较低。技术应用背景目前我国能源形势严峻的根本原因在于用能效率低下。我国每

常规水蒸汽朗肯循环发电技术常规水蒸汽朗肯循环发电技术

常规水蒸汽朗肯循环发电技术的特点

1.系统构成复杂,锅炉给水需要除氧、除盐,在锅炉部件及管路上需要设置排污及疏放水管路;凝结器里需保持较高的真空度,要设置真空维持系统。2.透平进排气压力低,蒸汽体积较大,透平通流面积较大。3.通常透平进口蒸汽需具有一定的过热度,在余热锅炉中必然要设置过热蒸汽加热段,余热锅炉的结构比较复杂。4.需要较多的运行、维修人员,运行成本较高。5.单机容量不能太小,系统满负荷运行率不高。6.一般只适用于烟气温度高于350℃以上的余热。常规水蒸汽朗肯循环发电技术的特点

1.系统构成复杂有机工质朗肯循环余热发电技术(ORC)(OrganicRankineCycle)中低温余热发电解决方案有机工质朗肯循环余热发电技术(ORC)中低温余热发电解决方~冷却塔有机工质余热锅炉加压泵储液罐有机透平发电机凝汽器冷却泵中低温烟气烟气余热有机朗肯循环(ORC)发电系统示意图有机工质朗肯循环余热发电技术(ORC)~冷却塔有机工质余热锅炉加压泵储液罐有机透平发电机凝汽器冷却有机工质朗肯循环余热发电原理

有机工质朗肯循环,即在传统朗肯循环中采用有机工质代替水推动膨胀机做功。上图为有机工质朗肯循环发电系统示意图。低压液态有机工质经过工质泵增压后进入蒸发器吸收热量转变为高温高压蒸气,高温高压有机工质蒸气推动膨胀机做功,产生能量输出,膨胀机出口的低压蒸气进入冷凝器,向低温热源放热并冷凝为液态,如此往复循环。有机工质朗肯循环余热发电原理有机工质朗肯循环有机工质朗肯循环余热发电原理有机工质朗肯循环系统能够实现余热回收和发电的最低余热资源温度可到80℃,(这一温度还可降低,但发电效率会降低,影响经济性)这是常规发电技术不能做到的(常规发电要求热源温度在350℃以上),从而拓宽了可以回收发电的余热资源范围,为建材、冶金、化工等行业的低温余热资源回收提供了技术手段和设备。同时,这项技术还可以推广到可再生能源发电系统中,(如地热、太阳能和生物质能)为可再生能源发电提供关键技术和设备。有机工质朗肯循环余热发电原理有机工质朗肯循环系统能

可利用的余热余热温度范围:80-350℃余热的形态:烟气,蒸汽,热水可以扩展的应用:地热利用、太阳能利用、生物质能。

需要根据具体环境、条件及应用需求进行系统设计。可利用的余热

国外的研究应用状况

七十年代末,美国研制出利用地热水发电的汽水两相螺杆膨胀机,功率60KW。八十年代后期美国完成一台1000KW地热水发电机组,随后,日本北海道大学进行了氟利昂工质的发电试验,80年代后期,日本进行了工业锅炉余热发电研究,功率102KW。近年来,美国,德国,以色列,瑞典都有相关研究和产品应用报导。国外的研究应用状况七十年代末,

我校在有机工质朗肯循环发电的研究

天津大学热能工程系和教育部“中低温热能高效利用”重点实验室对有机工质的热物理性质及热力循环的研究水平位居国内领先水平,在ORC技术的理论与实验研究中均取得了具有实用价值的成果,早在上世纪70年代,即建成了国内首台ORC太阳能热发电(1kW)实验系统,并取得了大量运行实验数据,近年,发表多篇关于ORC系统的理论实验研究论文,同时拥有多项关于有机工质及ORC系统构成的发明及实用新型专利。我校在有机工质朗肯循环发电的研究天津大学热

有机工质朗肯循环余热发电关键设备与技术1.螺杆膨胀机2.涡轮机(透平)3.热交换器4.有机工质优选5.发电系统优化设计有机工质朗肯循环余热发电关键设备与技术1.螺杆膨胀机有机工质朗肯循环中低温余热发电关键设备之一螺杆膨胀机简介有机工质朗肯循环中低温余热发电

螺杆膨胀机的基本构造

螺杆膨胀机是一种依据容积变化原理工作的双轴回转式螺杆机械。它的结构与螺杆压缩机基本相同,主要由一对螺杆转子、缸体、轴承、同步齿轮、密封组件以及联轴节等零件组成,结构简单,其气缸呈两圆相交的“∞”字形,两根按一定传动比反向旋转相互啮合的螺旋形阴、阳转子平行地置于气缸中。螺杆膨胀机的基本构造螺杆膨胀机结构简图结构简图有机朗肯循环中低温余热发电技术课件

螺杆膨胀机的工作原理作功介质先进入机内螺杆齿槽A,推动螺杆转动,随着螺杆转动,齿槽A旋转到B、C、D逐渐加长、容积增大,介质降压降温膨胀(或闪蒸)做功,最后从齿槽E排出,功率从主轴阳螺杆输出,亦可通过同步齿轮从阴螺杆输出,驱动风机、压缩机、水泵或发电机发电等。螺杆膨胀机的工作原理作功介质先进入螺杆膨胀机的应用●螺杆膨胀机的输出功率可以在5kW~1000kW之间,弥补了蒸汽轮机单机功率不能太小的空间。●对于有压力的余热流体,可直接利用螺杆膨胀机●对于<350℃的无压力的余热流体,利用有机工质朗肯循环螺杆膨胀机系统。●有机工质朗肯循环螺杆膨胀机系统。还可以用到太阳能、地热能等中低温可再生能源发电项目中去。有机工质循环螺杆膨胀机系统用于低温余热回收利用,有广阔的技术发展空间。螺杆膨胀机的应用●螺杆膨胀机的输出功率可以在5kW

螺杆膨胀机作为余热回收动力机,具有的技术特点(1)螺杆膨胀机适用于过热蒸汽、饱和蒸汽、汽水两相流体、(带压)热水及无压热流体的动力机械,可以回收不同种类的工业余热;(2)螺杆膨胀机还适用于高盐份的碱性流体,能除垢自洁,而且结垢有利于提高机器效率,因而对余热流体品质要求不高,扩大了应用范围;(3)当余热热源不稳定,参数变化时,机组效率表现稳定。螺杆膨胀机允许热源压力、流量在大范围内波动,对机组效率影响不大;螺杆膨胀机为容积式工作原理机,机内流速低,除泄漏损失外,很少其他损失,机组效率较高,即使蒸汽参数或负荷变动仍能保持高效率。螺杆膨胀机作为余热回收动力机,具有的技术特点(1)螺(4)螺杆膨胀机运行不用盘车、不暖机、不会飞车,可以直接冲转启动,操作简单,可实现无人职守,维修容易,不需要专门的专业技术人员,很适合工矿企业使用;(5)螺杆膨胀机的零部件少。螺杆转子坚固,大修周期长,小修简单,运行维护费用很低;(6)可调速,作为动力机使用,如拖动给水泵或灰浆水泵,拖动风机,压缩机可以根据要求灵活变速,使用方便。(4)螺杆膨胀机运行不用盘车、不暖机、不会飞车,可以直接冲转

我国对螺杆膨胀机的研究始于上世纪80年代。天津大学热能工程系在1987年研制成功汽液两相地热螺杆膨胀机发电装置(功率为5kw)。此后,对螺杆膨胀机进行了系统的理论和试验研究。近年来,由于节能减排的需求,在前期研究基础上,完成了有机工质循环螺杆膨胀机的热力循环研究、有机工质应用研究、装置结构研究和系统优化配置研究等项工作,并取得了一定的技术成果。我国对螺杆膨胀机的研究始于上世纪80年代。天津大学

单螺杆膨胀机单螺杆膨胀机有机工质朗肯循环中低温余热发电关键设备之一涡轮机(透平)有机工质朗肯循环中低温余热发电有机朗肯循环中低温余热发电技术课件

涡轮机(透平)的应用特点:功率密度高

适用于500-4000kW

用于余热量较大的场合

在余热量大的场合,可体现出占地小,效率高,造价低的优势。涡轮机(透平)的应用特点:有机工质朗肯循环中低温余热发电关键设备之一热交换器有机工质朗肯循环中低温余热发电热交换器的设计需要根据余热的类型和特点设计热交换器。包括蒸发器,冷凝器,预热器等。同时需要考虑防腐,防磨和除灰除垢和降低阻力等问题。热交换器的设计需要根据余热的类型和特有机工质朗肯循环中低温余热发电关键技术之一有机工质优选有机工质朗肯循环中低温余热发电

有机工质的选择

对于有机工质循环,经常选用的工质有R123、R245fa、R134a、R152a、氯乙烷、丙烷、正丁烷、异丁烷等。在余热发电系统中,对于不同类型,不同温度的热源应当选择不同的工质,工质的优选也会影响到系统的效率。有机工质的选择对于有机工质循

对于工质的选择要求(1)发电性能好,在相同条件下,实际发电量较大;(2)传热性能好,在相同条件下,换热系数较大;(3)工质的压力水平适宜,在相应的热源温度下,工质的饱和压力不很高;在冷源温度下,不会出现高度真空;(4)来源丰富,价格低廉;(5)化学稳定性好,不分解,对金属的腐蚀性小,毒性小,不燃,不爆。对于工质的选择要求ORC发电系统图热力学循环过程图工质选择不同工质经济效率随蒸发温度的变化ORC发电系统图热力学循环过程图工质选择不同工质经济效率随蒸混合工质用于有机朗肯循环的研究

可改善系统工作特性可提高发电效率混合工质用于有机朗肯循环的研究有机工质朗肯循环中低温余热发电关键技术之一发电系统优化设计有机工质朗肯循环中低温余热发电有机工质朗肯循环发电系统的优化设计有机工质朗肯循环的热力系统设计(包括系统热力参数的确定、工质选择、热交换器设计等)。会直接影响系统的运行效率。在得到热源的温度和流量等条件后,需要确定有机工质的蒸发温度、冷凝温度以及换热温差等,这些参数会对循环效率有较大的影响。

有机工质朗肯循环发电系统的优化设计有有机工质循环热力过程A有机工质蒸汽动力循环B有机工质汽液两相动力循环有机工质循环热力过程A有机工质蒸汽动力循环

经济性估算例如:余热热源为220℃的烟气,流量为2.5万m3/h,冷却水温度为25℃。采用有机工质循环方式,以R245fa作为循环工质,在扣除工质泵耗功,冷却水泵耗功之后,计算表明,每小时大约可以发出100度的电。经济性估算例如:余热热源为220℃的烟气,1.首先要对企业的余热资源及用能情况进行调研评估2.建议首先考虑余热直接利用的方式,遵循“温度对口,梯次利用”的原则3.余热发电是余热利用的有效方式之一,不是唯一4.对余热利用方案从热利用效率和经济性两个方面评价

对于企业余热余压资源回收利用的几点建议1.首先要对企业的余热资源及用能情况进行调研评估对于企业余热

总结●余热利用要对企业的余热资源及用能情况调研评估,建议首先考虑余热直接利用的方式,遵循“温度对口,梯次利用”的原则。余热发电是余热利用的有效方式之一,不是唯一。●采用有机工质朗肯循环余热发电系统是一种适用于<350℃低温余热回收技术。●可以应用于化工、冶金、纺织、建材、电力、医药等工业领域,还可以推广到可再生能源发电领域中去。●为提高系统效率,根据不同的余热热源特点,要进行系统的优化设计,包括循环热力参数确定,工质的选择,换热器设计等。●有机工质朗肯循环膨胀动力机不仅可以带动发电机发电,还可以作为动力机拖动压缩机、泵和风机工作,作为动力机具有良好的调速性能。总结●余热利用要对企业的余热资源及谢谢!谢谢!

有机朗肯循环(ORC)中低温余热发电技术介绍天津大学机械工程学院李惟毅liwy@2014.11.5有机朗肯循环(ORC)中低温余热发电技术介绍

能源危机!中低品位热能的回收利用受到重视!如何有效地回收利用中低品位热能?技术应用背景

能源危机!如何有效地回收利用中低品位热能?技术应用背景

技术应用背景余热余压利用工程是我国《节能中长期发展专项规划》中的十大重点节能工程之一。目前在我国工业的各个领域中存在大量的低温余热资源(350℃以下,低压或常压),由于缺乏有效的技术手段而没有得到充分利用,传统发电技术的工作参数大多为高参数、大容量,无法利用这部分较为分散但总量巨大的能源。而利用有机工质朗肯循环,开发新型、高效的低温余热发电系统,对于提高我国能源利用率、节能减排,保护环境具有重要的意义。技术应用背景余热余压利用工程是我国《节能中目前我国能源形势严峻的根本原因在于用能效率低下。我国每吨标准煤的产出效率仅相当于日本的10.3%、美国的28.6%。我国工业用能中近60-65%的能源转化为余热资源,其中温度低于350℃以下的低温余热,约占余热总量的60%,目前技术实现对其有效的回收利用较低。技术应用背景目前我国能源形势严峻的根本原因在于用能效率低下。我国每

常规水蒸汽朗肯循环发电技术常规水蒸汽朗肯循环发电技术

常规水蒸汽朗肯循环发电技术的特点

1.系统构成复杂,锅炉给水需要除氧、除盐,在锅炉部件及管路上需要设置排污及疏放水管路;凝结器里需保持较高的真空度,要设置真空维持系统。2.透平进排气压力低,蒸汽体积较大,透平通流面积较大。3.通常透平进口蒸汽需具有一定的过热度,在余热锅炉中必然要设置过热蒸汽加热段,余热锅炉的结构比较复杂。4.需要较多的运行、维修人员,运行成本较高。5.单机容量不能太小,系统满负荷运行率不高。6.一般只适用于烟气温度高于350℃以上的余热。常规水蒸汽朗肯循环发电技术的特点

1.系统构成复杂有机工质朗肯循环余热发电技术(ORC)(OrganicRankineCycle)中低温余热发电解决方案有机工质朗肯循环余热发电技术(ORC)中低温余热发电解决方~冷却塔有机工质余热锅炉加压泵储液罐有机透平发电机凝汽器冷却泵中低温烟气烟气余热有机朗肯循环(ORC)发电系统示意图有机工质朗肯循环余热发电技术(ORC)~冷却塔有机工质余热锅炉加压泵储液罐有机透平发电机凝汽器冷却有机工质朗肯循环余热发电原理

有机工质朗肯循环,即在传统朗肯循环中采用有机工质代替水推动膨胀机做功。上图为有机工质朗肯循环发电系统示意图。低压液态有机工质经过工质泵增压后进入蒸发器吸收热量转变为高温高压蒸气,高温高压有机工质蒸气推动膨胀机做功,产生能量输出,膨胀机出口的低压蒸气进入冷凝器,向低温热源放热并冷凝为液态,如此往复循环。有机工质朗肯循环余热发电原理有机工质朗肯循环有机工质朗肯循环余热发电原理有机工质朗肯循环系统能够实现余热回收和发电的最低余热资源温度可到80℃,(这一温度还可降低,但发电效率会降低,影响经济性)这是常规发电技术不能做到的(常规发电要求热源温度在350℃以上),从而拓宽了可以回收发电的余热资源范围,为建材、冶金、化工等行业的低温余热资源回收提供了技术手段和设备。同时,这项技术还可以推广到可再生能源发电系统中,(如地热、太阳能和生物质能)为可再生能源发电提供关键技术和设备。有机工质朗肯循环余热发电原理有机工质朗肯循环系统能

可利用的余热余热温度范围:80-350℃余热的形态:烟气,蒸汽,热水可以扩展的应用:地热利用、太阳能利用、生物质能。

需要根据具体环境、条件及应用需求进行系统设计。可利用的余热

国外的研究应用状况

七十年代末,美国研制出利用地热水发电的汽水两相螺杆膨胀机,功率60KW。八十年代后期美国完成一台1000KW地热水发电机组,随后,日本北海道大学进行了氟利昂工质的发电试验,80年代后期,日本进行了工业锅炉余热发电研究,功率102KW。近年来,美国,德国,以色列,瑞典都有相关研究和产品应用报导。国外的研究应用状况七十年代末,

我校在有机工质朗肯循环发电的研究

天津大学热能工程系和教育部“中低温热能高效利用”重点实验室对有机工质的热物理性质及热力循环的研究水平位居国内领先水平,在ORC技术的理论与实验研究中均取得了具有实用价值的成果,早在上世纪70年代,即建成了国内首台ORC太阳能热发电(1kW)实验系统,并取得了大量运行实验数据,近年,发表多篇关于ORC系统的理论实验研究论文,同时拥有多项关于有机工质及ORC系统构成的发明及实用新型专利。我校在有机工质朗肯循环发电的研究天津大学热

有机工质朗肯循环余热发电关键设备与技术1.螺杆膨胀机2.涡轮机(透平)3.热交换器4.有机工质优选5.发电系统优化设计有机工质朗肯循环余热发电关键设备与技术1.螺杆膨胀机有机工质朗肯循环中低温余热发电关键设备之一螺杆膨胀机简介有机工质朗肯循环中低温余热发电

螺杆膨胀机的基本构造

螺杆膨胀机是一种依据容积变化原理工作的双轴回转式螺杆机械。它的结构与螺杆压缩机基本相同,主要由一对螺杆转子、缸体、轴承、同步齿轮、密封组件以及联轴节等零件组成,结构简单,其气缸呈两圆相交的“∞”字形,两根按一定传动比反向旋转相互啮合的螺旋形阴、阳转子平行地置于气缸中。螺杆膨胀机的基本构造螺杆膨胀机结构简图结构简图有机朗肯循环中低温余热发电技术课件

螺杆膨胀机的工作原理作功介质先进入机内螺杆齿槽A,推动螺杆转动,随着螺杆转动,齿槽A旋转到B、C、D逐渐加长、容积增大,介质降压降温膨胀(或闪蒸)做功,最后从齿槽E排出,功率从主轴阳螺杆输出,亦可通过同步齿轮从阴螺杆输出,驱动风机、压缩机、水泵或发电机发电等。螺杆膨胀机的工作原理作功介质先进入螺杆膨胀机的应用●螺杆膨胀机的输出功率可以在5kW~1000kW之间,弥补了蒸汽轮机单机功率不能太小的空间。●对于有压力的余热流体,可直接利用螺杆膨胀机●对于<350℃的无压力的余热流体,利用有机工质朗肯循环螺杆膨胀机系统。●有机工质朗肯循环螺杆膨胀机系统。还可以用到太阳能、地热能等中低温可再生能源发电项目中去。有机工质循环螺杆膨胀机系统用于低温余热回收利用,有广阔的技术发展空间。螺杆膨胀机的应用●螺杆膨胀机的输出功率可以在5kW

螺杆膨胀机作为余热回收动力机,具有的技术特点(1)螺杆膨胀机适用于过热蒸汽、饱和蒸汽、汽水两相流体、(带压)热水及无压热流体的动力机械,可以回收不同种类的工业余热;(2)螺杆膨胀机还适用于高盐份的碱性流体,能除垢自洁,而且结垢有利于提高机器效率,因而对余热流体品质要求不高,扩大了应用范围;(3)当余热热源不稳定,参数变化时,机组效率表现稳定。螺杆膨胀机允许热源压力、流量在大范围内波动,对机组效率影响不大;螺杆膨胀机为容积式工作原理机,机内流速低,除泄漏损失外,很少其他损失,机组效率较高,即使蒸汽参数或负荷变动仍能保持高效率。螺杆膨胀机作为余热回收动力机,具有的技术特点(1)螺(4)螺杆膨胀机运行不用盘车、不暖机、不会飞车,可以直接冲转启动,操作简单,可实现无人职守,维修容易,不需要专门的专业技术人员,很适合工矿企业使用;(5)螺杆膨胀机的零部件少。螺杆转子坚固,大修周期长,小修简单,运行维护费用很低;(6)可调速,作为动力机使用,如拖动给水泵或灰浆水泵,拖动风机,压缩机可以根据要求灵活变速,使用方便。(4)螺杆膨胀机运行不用盘车、不暖机、不会飞车,可以直接冲转

我国对螺杆膨胀机的研究始于上世纪80年代。天津大学热能工程系在1987年研制成功汽液两相地热螺杆膨胀机发电装置(功率为5kw)。此后,对螺杆膨胀机进行了系统的理论和试验研究。近年来,由于节能减排的需求,在前期研究基础上,完成了有机工质循环螺杆膨胀机的热力循环研究、有机工质应用研究、装置结构研究和系统优化配置研究等项工作,并取得了一定的技术成果。我国对螺杆膨胀机的研究始于上世纪80年代。天津大学

单螺杆膨胀机单螺杆膨胀机有机工质朗肯循环中低温余热发电关键设备之一涡轮机(透平)有机工质朗肯循环中低温余热发电有机朗肯循环中低温余热发电技术课件

涡轮机(透平)的应用特点:功率密度高

适用于500-4000kW

用于余热量较大的场合

在余热量大的场合,可体现出占地小,效率高,造价低的优势。涡轮机(透平)的应用特点:有机工质朗肯循环中低温余热发电关键设备之一热交换器有机工质朗肯循环中低温余热发电热交换器的设计需要根据余热的类型和特点设计热交换器。包括蒸发器,冷凝器,预热器等。同时需要考虑防腐,防磨和除灰除垢和降低阻力等问题。热交换器的设计需要根据余热的类型和特有机工质朗肯循环中低温余热发电关键技术之一有机工质优选有机工质朗肯循环中低温余热发电

有机工质的选择

对于有机工质循环,经常选用的工质有R123、R245fa、R134a、R152a、氯乙烷、丙烷、正丁烷、异丁烷等。在余热发电系统中,对于不同类型,不同温度的热源应当选择不同的工质,工质的优选也会影响到系统的效率。有机工质的选择对于有机工质循

对于工质的选择要求(1)发电性能好,在相同条件下,实际发电量较大;(2)传热性能好,在相同条件下,换热系数较大;(3)工质的压力水平适宜,在相应的热源温度下,工质的饱和压力不很高;在冷源温度下,不会出现高度真空;(4)来源丰富,价格低廉;(5)化学稳定性好,不分解,对金属的腐蚀性小,毒性小,不燃,不爆。对于工质的选择要求ORC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论