版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Word-21-高一数学学生的教案范文高一数学同学教案范文七篇
现代高能物理到了量子物理之后,许多试验根本做不了。和数学家想的差不了多少,所以数学在物理上有着不行思议的力气。下面是为大家带来的高一数学同学教案范文七篇,盼望大家能够喜爱!
高一数学同学教案范文【篇1】
学习引导
一、自主学习
1.阅读课本练习止.
2.回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3.完成练习
4.小结.
二、方法指导
1.在学习对数函数时,同学们应从熟识的指数问题动身,通过对指数函数的熟悉逐步转化为对对数函数的熟悉,而且画对数函数图象时,既要考虑到对底数的分类争论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观看图象的特征,找出共性,归纳性质.
2.本节课的主线是对数函数是指数函数的反函数,全部的问题都应围围着这条主线绽开.同学们在学习时应当把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数讨论未知函数的性质
思索引导
一、提问题
1.对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数假如互为反函数,则他们的值域,定义域有什么关系?
3.是否全部的函数都有反函数?试举例说明.
二、变题目
1.试求下列函数的反函数:
(1);(2);
(3);(4).
2.求下列函数的定义域:
(1);(2);(3).
3.已知则=;的定义域为.
总结引导
1.对数函数的有关概念
(1)把函数叫做对数函数,叫做对数函数的底数;
(2)以10为底数的对数函数为常用对数函数;
(3)以无理数为底数的对数函数为自然对数函数.
2.反函数的概念
在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数.
3.与对数函数有关的定义域的求法:
4.举例说明如何求反函数.
拓展引导
一、课外作业:习题3-5A组1,2,3,B组1,
二、课外思索:
1.求定义域:.
2.求使函数的函数值恒为负值的的取值范围.
高一数学同学教案范文【篇2】
【内容与解析】
本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。同学已经学过了集合并且学校对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的进展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面学问的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简洁函数的定义域和值域。
【教学目标与解析】
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】
在本节课的教学中,同学可能遇到的问题是函数的概念及符号的理解,产生这一问题的缘由是:函数本身就是一个抽象的概念,对同学来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培育同学的抽象概况力量,其中关键是理论联系实际,把抽象转化为详细。
【教学过程】
问题1:一枚炮弹放射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2。
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让同学正确理解让同学体会用解析式或图象刻画两个变量之间的依靠关系,从问题的实际意义可知,在t的变化范围内任给一个t,根据给定的对应关系,都有唯一的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导同学看图并启发:在t的变化t根据给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。
问题3:要求同学仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让同学理解得到函数的定义,培育同学的归纳、概况的力量。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?假如给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
【例题】:
例1求下列函数的定义域
分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域肯定是集合!
例2已知函数
分析:理解函数f(x)的意义
例3下列函数中哪个与函数相等?
例4在下列各组函数中与是否相等?为什么?
分析:
(1)两个函数相等,要求定义域和对应关系都全都;
(2)用x还是用其它字母来表示自变量对函数实质而言没有影响.
【课堂目标检1测】
教科书第19页1、2.
【课堂小结】
1、理解函数的定义,函数的三要素,会球简洁的函数的定义域和函数值;
2、理解区间是表示数集的一种方法,会把不等式转化为区间。
高一数学同学教案范文【篇3】
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简洁集合的并集与交集;
(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:
新授课
教学重点:
集合的交集与并集的概念;
教学难点:
集合的交集与并集“是什么”,“为什么”,“怎样做”;
教学过程:
一、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思索(P9思索题),引入并集概念。
二、新课教学
1、并集
一般地,由全部属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B读作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的全部元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集
①A={6,8,10,12}B={3,6,9,12}
②A={x|-1≤x≤2}B={x|0≤x≤3}
(过度)问题:在上图中我们除了讨论集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关怀的,我们称其为集合A与B的交集。
2、交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B读作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题2求集合A与B的交集
③A={6,8,10,12}B={3,6,9,12}
④A={x|-1≤x≤2}B={x|0≤x≤3}
拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3、例题讲解
例3(P12例1):理解所给集合的含义,可借助venn图分析
例4P12例2):先“化简”所给集合,搞清晰各自所含元素后,再进行运算。
4、集合基本运算的一些结论:
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
若A∩B=A,则AB,反之也成立
若A∪B=B,则AB,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
高一数学同学教案范文【篇4】
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,同学对于直线平行和垂直的概念已经非常熟识,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面对同学的,高中同学本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中老师,深化了解所面对的同学可以说是必修课。本阶段的同学思维力量已经特别成熟,能够有自己独自的思索,所以应当乐观发挥这种优势,让同学独自思索探究。
三、教学目标
依据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)学问与技能
把握两条直线平行与垂直的判定,能够依据其判定两条直线的位置关系。
(二)过程与方法
在经受两条直线平行与垂直的判定过程中,提升规律推理力量。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说肯定要突出重点、突破难点。而教学重点的确立与我本节课的内容确定是密不行分的。那么依据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,同学是学习的主体,老师是学习的组织者、引导者,教学的一切活动都必需以强调同学的主动性、乐观性为动身点。依据这一教学理念,结合本节课的内容特点和同学的年龄特征,本节课我采纳讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采纳复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来推断两条直线的位置关系呢?
利用上节课所学的学问进行导入,很好的克服同学的畏难心情。
(二)新知探究
接下来是教学中最重要的新知探究环节,我主要采纳讲解法、小组合作、启发法等。
高一数学同学教案范文【篇5】
目标:
(1)使同学初步理解集合的概念,知道常用数集的概念及其记法
(2)使同学初步了解“属于”关系的意义
(3)使同学初步了解有限集、无限集、空集的意义
重点:集合的基本概念
教学过程:
1.引入
(1)章头导言
(2)集合论与集合论的康托尔(有关介绍可引用附录中的内容)
2.讲授新课
阅读教材,并思索下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于:假如a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:假如a不是集合A的元素,就说a不属于A,记作
要留意“∈”的方向,不能把a∈A颠倒过来写.
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.
(2)互异性:集合中的元素肯定是不同的.
(3)无序性:集合中的元素没有固定的挨次.
4、集合分类
依据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分,0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排解0的集.记作N_或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
注:(1)自然数集包括数0.
(2)非负整数集内排解0的集.记作N_或N+,Q、Z、R等其它数集内排解0的集,也这样表示,例如,整数集内排解0的集,表示成Z_
课堂练习:教材第5页练习A、B
小结:本节课我们了解集合论的进展,学习了集合的概念及有关性质
课后作业:第十页习题1-1B第3题
高一数学同学教案范文【篇6】
一、指导思想与理论依据
数学是一门培育人的思维,进展人的思维的重要学科。因此,在教学中,不仅要使同学“知其然”而且要使同学“知其所以然”。所以在同学为主体,老师为主导的原则下,要充分揭示猎取学问和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采纳观看、启发、类比、引导、探究相结合的教学方法。在教学手段上,则采纳多媒体帮助教学,将抽象问题形象化,使教学目标体现的更加完善。
二、教材分析
三角函数的诱导公式是一般高中课程标准试验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过同学在已经把握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发觉任意角与、、终边的对称关系,发觉他们与单位圆的交点坐标之间关系,进而发觉他们的三角函数值的关系,即发觉、把握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培育同学养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有特别重要的地位.
三、学情分析
本节课的授课对象是本校高一(1)班全体同学,本班同学水平处于中等偏下,但本班同学具有擅长动手的良好学习习惯,所以采纳发觉的教学方法应当能轻松的完成本节课的教学内容.
四、教学目标
(1).基础学问目标:理解诱导公式的发觉过程,把握正弦、余弦、正切的诱导公式;
(2).力量训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简洁的三角函数求值与化简;
(3).创新素养目标:通过对公式的推导和运用,提高三角恒等变形的力量和渗透化归、数形结合的数学思想,提高同学分析问题、解决问题的力量;
(4).共性品质目标:通过诱导公式的学习和应用,感受事物之间的一般联系规律,运用化归等数学思想方法,揭示事物的本质属性,培育同学的唯物史观.
五、教学重点和难点
1.教学重点
理解并把握诱导公式.
2.教学难点
正确运用诱导公式,求三角函数值,化简三角函数式.
六、教法学法以及预期效果分析
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给同学数学学问,更重要的是传授给同学数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、仔细探究.下面我从教法、学法、预期效果等三个方面做如下分析.
1.教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学学问,更主要作用是为了训练人的思维技能,提高人的思维品质.
在本节课的教学过程中,本人以同学为主题,以发觉为主线,尽力渗透类比、化归、数形结合等数学思想方法,采纳提出问题、启发引导、共同探究、综合应用等教学模式,还给同学“时间”、“空间”,由易到难,由特别到一般,尽力营造轻松的学习环境,让同学体会学习的欢乐和胜利的喜悦.
2.学法
“现代的文盲不是不识字的人,而是没有把握学习方法的人”,许多课堂教学经常以高起点、大容量、快推动的做法,以便教给同学更多的学问点,却忽视了同学接受学问需要时间消化,进而泯灭了同学学习的爱好与热忱.如何能让同学程度的消化学问,提高学习热忱是教者必需思索的问题.
在本节课的教学过程中,本人引导同学的学法为思索问题、共同探讨、解决问题简洁应用、重现探究过程、练习巩固。让同学参加探究的全部过程,让同学在猎取新学问及解决问题的方法后,合作沟通、共同探究,使之由被动学习转化为主动的自主学习.
3.预期效果
本节课预期让同学能正确理解诱导公式的发觉、证明过程,把握诱导公式,并能娴熟应用诱导公式了解一些简洁的化简问题.
七、教学流程设计
(一)创设情景
1.复习锐角300,450,600的三角函数值;
2.复习任意角的三角函数定义;
3.问题:由,你能否知道sin2100的值吗?引如新课.
设计意图
自信的鼓舞是增加同学学习数学的自信,简洁易做的题加强了每个同学学习的热忱,详细数据问题的消失,让同学既有似乎会做的心理但又有迷惑的茫然,去发掘潜力期盼查找机会证明我能行,从而思索解决的方法.
(二)新知探究
1.让同学发觉300角的终边与2100角的终边之间有什么关系;
2.让同学发觉300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
3.Sin2100与sin300之间有什么关系.
设计意图
由特别问题的引入,使同学简单了解,实现教学过程的平淡过度,为同学们探究发觉任意角与的三角函数值的关系做好铺垫.
(三)问题一般化
探究一
1.探究发觉任意角的终边与的终边关于原点对称;
2.探究发觉任意角的终边和角的终边与单位圆的交点坐标关于原点对称;
3.探究发觉任意角与的三角函数值的关系.
设计意图
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特别到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为同学将要自主发觉、探究公式三和四起到示范作用,下面练习设计为了熟识公式一,让同学感知到胜利的喜悦,进而敢于挑战,敢于前进
(四)练习
利用诱导公式(二),口答下列三角函数值.
(1).;(2).;(3)..
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
(五)问题变形
由sin3000=-sin600动身,用三角的定义引导同学求出sin(-3000),Sin1500值,让同学联想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.同学自主探究
高一数学同学教案范文【篇7】
学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,盼望对您有所关心!
教学目标
1、使同学理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能依据递推公式写出数列的前几项。
(1)理解数列是按肯定挨次排成的一列数,其每一项是由其项数唯一确定的。
(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能依据通项公式写出数列的前几项,并能依据给出的一个数列的前几项写出该
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版风电场基础锚索施工安全责任合同4篇
- 2025年高校特聘教授任期科研成果转化与产业化合同4篇
- 二零二四年度新材料研发与产业化合作合同3篇
- 2025年大运河物流公司员工劳动合同范本(用人单位)4篇
- 2025年度车展期间网络直播与新媒体运营合同4篇
- 2025年度网络平台虚拟商品买卖担保合同模板4篇
- 2025年度车辆租赁市场调研与分析合同8篇
- 2025版大型设备运输承包服务合同3篇
- 2025版宅基地买卖转让合同含农村土地流转风险评估协议3篇
- 二零二五年度海外定居子女教育跟踪与评估服务合同4篇
- 物业民法典知识培训课件
- 2023年初中毕业生信息技术中考知识点详解
- 2024-2025学年八年级数学人教版上册寒假作业(综合复习能力提升篇)(含答案)
- 《万方数据资源介绍》课件
- 第一章-地震工程学概论
- 《中国糖尿病防治指南(2024版)》更新要点解读
- 浙江省金华市金东区2022-2024年中考二模英语试题汇编:任务型阅读
- 青岛版(五四制)四年级数学下册全册课件
- 大健康行业研究课件
- 租赁汽车可行性报告
- 计算机辅助设计AutoCAD绘图-课程教案
评论
0/150
提交评论