福建省莆田二十四中学2022年数学八上期末达标检测试题含解析_第1页
福建省莆田二十四中学2022年数学八上期末达标检测试题含解析_第2页
福建省莆田二十四中学2022年数学八上期末达标检测试题含解析_第3页
福建省莆田二十四中学2022年数学八上期末达标检测试题含解析_第4页
福建省莆田二十四中学2022年数学八上期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣22.在平面直角坐标系中,已知点P的坐标为(3,4),点P与点Q关于y轴对称,则Q点的坐标是()A.(3,4) B.(-3,4) C.(3,-4) D.(-3,-4)3.不等式的解集在数轴上表示正确的是()A. B. C. D.4.下列运算不正确的是()A.x2•x3=x5 B.(x2)3=x6 C.x3+x3=2x6 D.(﹣2x)3=﹣8x35.下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±46.下列命题是真命题的有()①若a2=b2,则a=b;②内错角相等,两直线平行.③若a,b是有理数,则|a+b|=|a|+|b|;④如果∠A=∠B,那么∠A与∠B是对顶角.A.1个 B.2个 C.3个 D.4个7.如图所示,亮亮课本上的三角形被墨迹涂抹了一部分,但他根据所学知识很快画出了一个完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.下列图形中,不具有稳定性的是()A. B. C. D.9.等腰三角形的周长为12,则腰长a的取值范围是()A.3<a<6 B.a>3 C.4<a<7 D.a<610.如图,在中,,,垂直平分,交于点,,则边的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.如果,那么_______________________.12.在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,以PB为边作等边△PBM,则线段AM的长最大值为_____.13.金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是__________.14.使函数有意义的自变量的取值范围是_______.15.因式分解:_________.16.甲乙丙丁四位同学在5次数学测试中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是______.17.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=_____.18.使代数式有意义的x的取值范围是_____.三、解答题(共66分)19.(10分)如图,在直角坐标系中,,,.(1)求的面积;(2)若把向下平移2个单位,再向右平移5个单位得到,请画出并写出的坐标.20.(6分)计算:(1)(2)分解因式(3)解分式方程21.(6分)分解因式:①4m2﹣16n2②(x+2)(x+4)+122.(8分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表组别观点频数(人数)A损坏零件50B破译密码20C乱停乱放aD私锁共享单车,归为己用bE其他30调查结果扇形图请根据以上信息,解答下列问题:(1)填空:a=;b=;m=;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.23.(8分)一辆汽车开往距离出发地200km的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前30分钟到达目的地,求前1小时的行驶速度.24.(8分)在△ABC中,CF⊥AB于F,ED∥CF,∠1=∠1.(1)求证:FG∥BC;(1)若∠A=55°,∠1=30°,求∠FGC的度数.25.(10分)如图,直线的解析表达式为,且与轴交于点.直线经过点,直线交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)在轴上求作一点,使的和最小,直接写出的坐标.26.(10分)先化简,再求值:1-÷,其中x=-2.

参考答案一、选择题(每小题3分,共30分)1、D【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式有意义,∴x+1≠0,即x≠﹣1.故选D.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.2、B【解析】根据轴对称---平面直角坐标系中关于y轴对称的点的特点:纵坐标不变,横坐标变为相反数,可知Q点的坐标为(-3,4).故选B.点睛:此题主要考查了轴对称---平面直角坐标系,解题关键是明确坐标系中的轴对称特点是:关于哪个轴对称时,那个坐标不变,另一个变为相反数,直接可求解,比较简单.3、B【分析】首先计算出不等式的解集,再在数轴上表示出来.【详解】解:解得.在数轴上表示为:故选B.【点睛】本题主要考查了解一元一次不等式及把不等式的解集在数轴上表示出来(>,≥向右画,<,≤向左画).在表示解集时,“≥,≤”用实心圆点表示,“>,<”用空心圆点表示.4、C【解析】A.∵x2•x3=x5,故正确;B.∵(x2)3=x6,故正确;C.∵x3+x3=2x3,故不正确;D.∵(﹣2x)3=﹣8x3,故正确;故选C.5、B【分析】根据平方根和算术平方根的知识点进行解答得到答案.【详解】A.,错误;B.(﹣)2=2,正确;C.,错误;D.,错误;故选B.【点睛】本题主要考查二次根式的性质与化简,仔细检查是关键.6、D【解析】试题解析:①若a2=b2,则a=b;是假命题;②内错角相等,两直线平行.是真命题;③若a,b是有理数,则|a+b|=|a|+|b|;是假命题;④如果∠A=∠B,那么∠A与∠B是对顶角.是假命题;故选A.7、D【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.8、B【分析】根据三角形具有稳定性,四边形不具有稳定性即可判断.【详解】解:因为三角形具有稳定性,四边形不具有稳定性,∴A、C、D三个选项的图形具有稳定性,B选项图形不具有稳定性故选B.【点睛】本题考查三角形的稳定性,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、A【分析】根据等腰三角形的腰长为a,则其底边长为:12﹣2a,根据三角形三边关系列不等式,求解即可.【详解】解:由等腰三角形的腰长为a,则其底边长为:12﹣2a.∵12﹣2a﹣a<a<12﹣2a+a,∴3<a<1.故选:A.【点睛】本题考查了三角形三边的关系,对任意一个三角形,任意两边之和大于第三边,任意两边之差小于第三边,灵活利用三角形三边的关系确定三角形边长的取值范围是解题的关键.10、C【分析】连接AE,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠BAE=∠B=15°,然后又三角形外角的性质,求得∠AEC的度数,继而根据含30°的直角三角形的性质求得AC的长.【详解】解:连接AE,∵垂直平分,

∴AE=,

∴∠BAE=∠B=15°,

∴∠AEC=∠BAE+∠B=30°,

∵∠C=90°,AE=,

∴AC=AE=5cm.

故选:C.【点睛】本题考查线段垂直平分线的性质、含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(每小题3分,共24分)11、【分析】根据二次根式的有意义的条件可求出x,进而可得y的值,然后把x、y的值代入所求式子计算即可.【详解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.12、1.【详解】如图,当点P在第一象限内时,将三角形APM绕着P点旋转60°,得DPB,连接AD,则DP=AP,∠APD=60°,AM=BD,ADP是等边三角形,所以BDAD+AB可得,当D在BA延长线上时,BD最长,点D与O重合,又点A的坐标为(2,0),点B的坐标为(1,0),AB=3,AD=AO=2,BD=AD+AB=1=AM,即线段AM的长最大值为1;当点P在第四象限内时,同理可得线段AM的长最大值为1.所以AM最大值是1.故答案为1.13、3300元【分析】设无人机组有x个同学,航空组有y个同学,根据人数为18列出二元一次方程,根据航空组的同学不少于3人但不超过9人,得到x,y的解,再代入模型费用进行验证即可求解.【详解】设无人机组有x个同学,航空组有y个同学,依题意得x+2x-3+y=18解得x=∵航空组的同学不少于3人但不超过9人,x,y为正整数,故方程的解为,,设为无人机组的每位同学购买a个无人机模型,当时,依题意得6a×165+2×9×75+3×3×98=6114解得a=,不符合题意;当时,依题意得5a×165+2×7×75+6×3×98=6114解得a=4,符合题意,故购买无人机模型的费用是3300元;当时,依题意得4a×165+2×5×75+9×3×98=6114解得a=,不符合题意;综上,答案为3300元.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意列出方程,再分类讨论进行求解.14、【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可.【详解】解:∵有意义∴6-x≥0∴故答案为:【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条件,掌握二次根式,被开方数a≥0是解题的关键.15、【分析】利用提取公因式a和完全平方公式进行因式分解.【详解】【点睛】本题考查了提公因式法与公式法的综合运用,正确应用完全平方公式是解题关键.16、丁【分析】根据方差进行判断即可.【详解】∵,,,,∴丁的方差最小,∴成绩最稳定的同学是丁.故答案为:丁.【点睛】本题考查了方差,明确方差的意义是解题的关键.17、【详解】试题分析:如图,过E作EF∥AB,根据平行于同一直线的两直线互相平行,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC=44°,∠BAE=∠FEA,求出∠BAE=90°-44°=46°,即可求出∠1=180°-46°=134°.18、x≥0且x≠2【解析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得2x-1≠0,再解不等式即可.【详解】由题意得:x⩾0且2x−1≠0,解得x⩾0且x≠,故答案为x⩾0且x≠.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件.牢记分式、二次根式成立的条件是解题的关键.三、解答题(共66分)19、(1)7.5;(2),详见解析【分析】(1)根据直角坐标系首先求出ΔABC的高和底,利用三角形面积公式即可解答;(2)首先画出平移图形,再写出坐标即可.【详解】解:(1)根据直角坐标系知AB=5,AB边上的高为3,∴的面积是:;(2)作图如图所示,∴点的坐标为:【点睛】本题主要考查直角坐标系中图形的平移,熟知点的坐标平移方法是解答的关键.20、(1),;(2),;(3),【分析】(1)根据整式的混合运算法则进行计算即可;(2)根据提公因式法和公式法进行因式分解;(3)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可.【详解】解::(1),;(2),;(3)方程两边同时乘得:,去括号、移项得:,解得:,经检验,是原方程的解,所以,方程两边同时乘得:,去括号、移项得:,解得:,经检验,是原方程的解,所以.【点睛】本题综合考查了整式的混合运算、因式分解和分式方程的解法,要注意分式方程求解后要验根.21、①4(m+2n)(m﹣2n);②(x+3)2【分析】①原式提取4后,利用平方差分解因式即可得出答案;②原式整理后,利用完全平方公式分解即可得出答案.【详解】①解:4m2﹣16n2=4(m2﹣4n2)=4(m+2n)(m﹣2n)②解:(x+2)(x+4)+1=x2+6x+8+1=x2+6x+9=(x+3)2【点睛】本题考查了提取公因式法与公式法的综合运用,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,熟练掌握因式分解的方法是解题的关键.22、(1)60;40;15;(2)扇形图中B组所在扇形的圆心角度数为36°;(3)持有D组观点的市民人数大约为20万人.【分析】(1)从统计图中得到A组有50人,占调查人数的25%,可求出调查总人数,再求得C组、D组人数和m的值,

(2)先求出B组所占的百分比,再求得所占的圆心角的度数,

(3)根据样本估计总体,样本中D组占20%,估计总体中D组也占20%,从而而求出人数.【详解】(1)50÷25%=200人,c=200×30%=60人,b=200×20%=40人,30÷200=15%;(2)360°×(1﹣25%﹣30%﹣20%﹣15%)=36°;答:扇形图中B组所在扇形的圆心角度数为36°.(3)100×20%=20(万人)答:持有D组观点的市民人数大约为20万人.【点睛】考查了条形统计图、扇形统计图的意义,解题关键是从两个统计图中获取所需数据和数据之间的关系.23、原计划的行驶速度为80千米/时.【分析】首先设原计划的行驶速度为x千米/时,根据题意可得等量关系:原计划所用时间实际所用时间=30分钟,根据等量关系列出方程,再解即可.【详解】解:设原计划的行驶速度为x千米/时,由题意得:,解得:,经检验:x=80是原分式方程的解.答:原计划的行驶速度为80千米/时.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,表示出原计划所用时间和实际所用时间,根据时间关系列出分式方程.24、(1)证明见解析;(1)∠FGC=115°.【分析】(1)根据平行线的性质、等量代换推知内错角∠2=∠1,则易证得结论;

(1)根据等量关系可求∠1=20°,根据垂直的定义可求∠AFG,再根据角的和差关系即可求解.【详解】(1)如图,∵DE∥FC,∴∠1=∠2.又∵∠1=∠1,∴∠1=∠2,∴FG∥BC;(1)∵∠1=∠1且∠1=20°,∴∠1=20°.∵CF⊥AB,∴∠AFG=90°﹣20°=60°,∴∠FGC=∠AFG+∠A=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论