版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.估算在()A.5与6之间 B.6与7之间 C.7与8之间 D.8与9之间2.若代数式有意义,则实数的取值范围是()A. B. C. D.3.下列命题的逆命题为假命题的是()A.如果一元二次方程没有实数根,那么.B.线段垂直平分线上任意一点到这条线段两个端点的距离相等.C.如果两个数相等,那么它们的平方相等.D.直角三角形两条直角边的平方和等于斜边的平方.4.在实数中,,,是无理数的是()A. B. C. D.5.若a>b,则下列结论不一定成立的是()A.a+2>b+2 B.-3a<-3b C.a2>b2 D.1-4a<1-4b6.如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30° B.45° C.60° D.90°7.化简的结果为()A. B.a﹣1 C.a D.18.2211年3月11日,里氏1.2级的日本大地震导致当天地球的自转时间较少了2.22222216秒,将2.22222216用科学记数法表示为()A. B. C. D.9.等腰△ABC中,∠C=50°,则∠A的度数不可能是()A.80° B.50° C.65° D.45°10.下列句子中,不是命题的是()A.三角形的内角和等于180度 B.对顶角相等C.过一点作已知直线的垂线 D.两点确定一条直线二、填空题(每小题3分,共24分)11.分解因式:x2y﹣y=_____.12.按一定规律排成的一列数依次为……照此下去,第个数是________.13.在实数范围内,把多项式因式分解的结果是________.14.关于x、y的方程组的解是,则n﹣m的值为_____.15.判定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成______;______;______;______;______.16.在实数范围内分解因式:____.17.点和关于轴对称,则_____.18.已知:,则_______________三、解答题(共66分)19.(10分)在中,,点在射线上(不与点,重合),连接,将绕点顺时针旋转得到,连接.如图,点在边上.(1)依题意;补全图;(2)作交于点,若,求的长;20.(6分)甲、乙两车从城出发匀速行驶至城,在整个行驶过程中,甲、乙离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求在乙车行驶过程中,当为何值时,两车相距20千米?21.(6分)已知3a+b的立方根是2,b是的整数部分,求a+b的算术平方根.22.(8分)先化简,再求值(1),其中,(2),其中23.(8分)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.24.(8分)已知是等边三角形,点是的中点,点在射线上,点在射线上,,(1)如图1,若点与点重合,求证:.(2)如图2,若点在线段上,点在线段上,求的值.25.(10分)化简与计算(1)将公式变形成已知与,求.(假定变形中所有分式其分母都不为0)(2)(3)计算:(4)计算:,并把结果按字母升幂排列26.(10分)如图,已知在和中,交于点,求证:;当时,求的度数.
参考答案一、选择题(每小题3分,共30分)1、D【解析】直接得出接近的有理数,进而得出答案.【详解】∵<<,
∴8<<9,
∴在8与9之间.
故选:D.【点睛】本题考查了估算无理数的大小,正确得出接近的有理数是解题的关键.2、D【分析】分式有意义的条件是分母不为.【详解】代数式有意义,,故选D.【点睛】本题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件.3、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】、逆命题为:如果一元一次方程中,那么没有实数根,正确,是真命题;、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.4、A【解析】无限不循环小数是无理数,根据定义判断即可.【详解】是无理数;是有理数,不是无理数;=3是有理数,不是无理数;=2是有理数,不是无理数,故选:A.【点睛】此题考查无理数定义,熟记定义并掌握无理数与有理数的区别即可正确解答.5、C【分析】根据不等式的性质逐项判断即得答案.【详解】解:A、若a>b,则a+2>b+2,故本选项结论成立,不符合题意;B、若a>b,则﹣3a<﹣3b,故本选项结论成立,不符合题意;C、若a>b≥0,则a2>b2,若0≥a>b,则a2<b2,故本选项结论不一定成立,符合题意;D、若a>b,则1-4a<1-4b,故本选项结论成立,不符合题意.故选:C.【点睛】本题考查了不等式的性质,属于常考题型,熟练掌握不等式的性质是解题的关键.6、C【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故选C.【点睛】本题考查了等边三角形的判定与性质,解题的关键是能根据题意得到OB=OA=AB.7、B【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=,=,=a﹣1故选B.点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8、A【分析】科学记数法的表示形式为a×12n的形式,其中1≤|a|<12,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×12n的形式,其中1≤|a|<12,n为整数,表示时关键要正确确定a的值以及n的值.9、D【分析】分类讨论后,根据三角形内角和定理及等腰三角形的两个底角相等解答即可.【详解】当∠C为顶角时,则∠A=(180°﹣50°)=65°;当∠A为顶角时,则∠A=180°﹣2∠C=80°;当∠A、∠C为底角时,则∠C=∠A=50°;∴∠A的度数不可能是45°,故选:D.【点睛】本题考查了三角形内角和定理,等腰三角形的性质,掌握等腰三角形两底角相等的性质是解题的关键.10、C【分析】判断一件事情的句子叫做命题,根据定义即可判断.【详解】解:C选项不能进行判断,所以其不是命题.故选C【点睛】本题考查了命题,判断命题关键掌握两点:①能够进行判断;②句子一般是陈述句.二、填空题(每小题3分,共24分)11、y(x+1)(x﹣1)【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1).故答案为:y(x+1)(x﹣1).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12、【分析】根据题目给出数列的规律即可求出答案.【详解】解:分子可以看出:故第10个数的分子为:分母可以看出:第奇数个分母是其个数的平方加1,例如:12+1=2,32+1=10,52+1=26,
第偶数个分母是其个数的平方减1,例如:22-1=3,42-1=15,62-1=35,故这列数中的第10个数是:故答案为:【点睛】此题主要考查了数字变化规律,正确得出分母的变化规律是解题关键.13、【分析】首先提取公因式3,得到,再对多项式因式利用平方差公式进行分解,即可得到答案.【详解】==故答案是:【点睛】本题考查了对一个多项式在实数范围内进行因式分解.能够把提取公因式后的多项式因式写成平方差公式的形式是解此题的关键.14、1【分析】根据方程组的解满足方程组,把解代入,可得关于m、n的二元一次方程组,求解该方程组即可得答案.【详解】把代入,得,求解关于m、n的方程组可得:,故.故答案为:1.【点睛】本题考查二元一次方程组,求解时常用代入消元法或加减消元法,其次注意计算仔细即可.15、SSS;AAS;SAS;.ASA;HL【解析】试题解析:判定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成SSS;AAS;SAS;ASA;HL.16、【分析】将原式变形为,再利用平方差公式分解即可得.【详解】===,故答案为:.【点睛】本题主要考查实数范围内分解因式,解题的关键是熟练掌握完全平方公式和平方差公式.17、【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”计算即可.【详解】∵点和关于轴对称,
∴,,
解得:,,则.
故答案为:.【点睛】本题主要考查了关于x轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:①关于x轴对称的点,横坐标相同,纵坐标互为相反数;②关于y轴对称的点,纵坐标相同,横坐标互为相反数;③关于原点对称的点,横坐标与纵坐标都互为相反数18、-2【分析】根据幂的乘方、负指数幂及同底数幂的运算公式即可求解.【详解】∵∴故∴3-3x+2x-3=2,解得x=-2,故填:-2.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式及运用.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)根据题意,过点D作DE⊥AD,补全图形即可;(2)首先判定,然后得出AF=BE,再利用平行线分线段成比例性质得出AF,即可得出BE.【详解】(1)①补全图形,如图所示:②如图所示:由题意可知(SAS)∴AF=BE在和中,DF∥AC,∴∴即.【点睛】此题主要考查等腰直角三角形的性质以及全等三角形的判定与性质和平行线分线段成比例的性质,熟练掌握,即可解题.20、(1)乙车比甲车晚出发1小时;(2)乙车出发1.5小时后追上甲车;(3)在乙车行驶过程中,当t为1或2时,两车相距20千米.【分析】(1)从图像及题意可直接进行解答;(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,乙车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,然后根据图像可求出函数解析式,进而联立两个函数关系求解;(3)由(2)及题意可分类进行求解,即当乙车追上甲车前和当乙车追上甲车后.【详解】解:(1)由图像可得:甲车的图像是从原点出发,而乙车的图像经过点,则:所以乙车比甲车晚出发1小时;答:乙车比甲车晚出发1小时.(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,由图像得,把代入得:,解得,;设乙车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,由图像得,把代入得:,解得,,,解得,(小时).答:乙车出发1.5小时后追上甲车.(3)由(2)可得:甲车函数解析式为,乙车的函数解析式为,当乙车追上甲车前两车相距20千米时,,解得;当乙车追上甲车后两车相距20千米时,,解得;2-1=1(小时)或3-1=2(小时);在乙车行驶过程中,当t为1或2时,两车相距20千米.【点睛】本题主要考查一次函数的实际应用,熟练掌握一次函数的实际应用是解题的关键.21、1.【分析】首先根据立方根的概念可得3a+b的值,接着估计的大小,可得b的值;进而可得a、b的值,进而可得a+b;最后根据平方根的求法可得答案.【详解】解:根据题意,可得3a+b=8;又∵1<<3,
∴b=1,∴3a+1=8;
解得:a=1
∴a+b=1+1=4,
∴a+b的算术平方根为1.故答案为:1.【点睛】此题主要考查了立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.22、(1)3;(2)【分析】(1)根据去括号与合并同类项的法则将代数式化简,然后把给定的值代入计算即可.(2)根据分式的混合运算法则把原式化简,把给定的值代入计算即可.【详解】(1)解:原式=,当时,上式=;(2)解:原式=当时,上式=.【点睛】本题考查的是分式的化简求值、整式的混合运算,解题的关键是注意运算顺序以及符号的处理.23、(1)普通列车的行驶路程为520千米;(2)普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.【解析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;
(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.【详解】(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时,则题意得:,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.【点睛】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.24、(1)见解析(2)12.【解析】(1)由等边三角形和等腰三角形的性质得出∠DBC=∠P,即可得出DB=DE;(2)过点D作DH∥BC,交AB于点H,证明△DQH≌△DPC(ASA),得出HQ=CP,得出BQ+BP=BH+HQ+BP=BH+BP+PC=BH+BC=即可求解.【详解】(1)证明:∵△ABC为等边三角形,∴BA=BC,∠ABC=60,∵D为AC的中点,∴DB平分∠ABC,∴∠DBC=30,∵∴∠P=180−120−30=30∴∠DBC=∠P,∴DB=DP(2)过点D作DH∥BC,交AB于点H,如图2所示:∵△ABC为等边三角形,∴∠A=∠B=∠C=60,∵DH∥BC,∴∠AHD=∠B=60,∠ADH=∠C=60,∴∠AHD=∠ADH=∠C=60,∠HDC=120,∴△ADH是等边三角形,∴DH=AD,∵D为AC的中点,∴DA=DC,∴DH=DC,∵∠PDQ=120,∠HDC=120,∴∠PDH+∠QDH=∠PDH+∠CDP,∴∠QDH=∠CDP,在△DQH和△DPC中,,∴△DQH≌△DPC,∴HQ=CP,∴BQ+BP=BH+HQ+BP=BH+BP+PC=BH+BC==12,即=12.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《技术经济复习》课件
- 浮力课件教学课件
- 美国医疗文化
- 《绦虫专科》课件
- 儿童折纸课件
- 六下How tall are you 单元整体教学设计
- 《道路勘测设计》课件-2-4道路单圆曲线几何要素
- 《会议管理》课件
- 塑料成分分析
- 大学体育与健康 教案 网球14
- 采购签字流程
- 退火炉安全操作规程
- QCT29058-1992载货汽车车箱技术条件
- 外墙真石漆和内外墙乳胶漆施工工艺完整
- 华南理工大学电力电子技术课程设计报告
- 喷漆工岗位考试题(附答案)
- 四分制验布标准.xls
- 1639.18山东省重点工业产品用水定额第18部分:金属矿采选业重点工业产品
- 现在进行时和过去进行时中考专项复习.ppt
- 初中生数学探究性学习能力培养略谈
- 控制点复测方案
评论
0/150
提交评论