版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各组值中,不是方程的解的是()A. B. C. D.2.用四舍五入法将精确到千分位的近似数是()A. B. C. D.3.(2015秋•孝感月考)下列各式从左到右的变形是因式分解的是()A.(a+5)(a﹣5)=a2﹣25B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2﹣1=a2+2ab+b2﹣1D.a2﹣4a﹣5=a(a﹣4)﹣54.如图,数轴上的点A表示的数是-2,点B表示的数是1,于点B,且,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A. B. C. D.25.如图,已知的大小为,是内部的一个定点,且,点,分别是、上的动点,若周长的最小值等于,则的大小为()A. B. C. D.6.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③7.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. B. C. D.8.估计的值在()A.3.2和3.3之间 B.3.3和3.4之间 C.3.4和3.5之间 D.3.5和3.6之间9.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤210.因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2 B.x(2x﹣1)(2x+1) C.x(1﹣2x)(2x+1) D.x(1﹣4x2)11.如图所示的标志中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个12.下列等式中正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知:在中,,垂足为点,若,,则______.14.一次数学活动课上,老师利用“在面积一定的矩形中,正方形的周长最短”这一结论,推导出“式子的最小值为”.其推导方法如下:在面积是的矩形中,设矩形的一边长为,则另一边长是,矩形的周长是;当矩形成为正方形时,就有,解得,这时矩形的周长最小,因此的最小值是,模仿老师的推导,可求得式子的最小值是________.15.在平面直角坐标系xOy中,直线l:y=2x﹣2与x轴交于点A1,如图所示,依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形AnBn∁nCn﹣1,使得点A1,A2,A3,…An在直线l上,点C1,C2,C3,…∁n在y轴正半轴上,则正方形AnBn∁nCn﹣1的面积是_____.16.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为_________.17.用反证法证明在△ABC中,如果AB≠AC,那么∠B≠∠C时,应先假设________.18.如图,在△ABC中,AB=AC,AB的垂直平分线DE交CA的延长线于点E,垂足为D,∠C=26°,则∠EBA=_____°.三、解答题(共78分)19.(8分)将分别标有数字1、2、3的三张硬纸片,反面一样,现把三张硬纸片搅均反面朝上(1)随机抽取一张,恰好是奇数的概率是多少(2)先抽取一张作为十位数(不放回),再抽取一张作为个位数,能组成哪些两位数,将它们全部列出来,并求所取两位数大于20的概率20.(8分)如图,在平面直角坐标系中,点坐标为,点是轴正半轴上一点,且,点是轴上位于点右侧的一个动点,设点的坐标为.(1)点的坐标为___________;(2)当是等腰三角形时,求点的坐标;(3)如图2,过点作交线段于点,连接,若点关于直线的对称点为,当点恰好落在直线上时,_____________.(直接写出答案)21.(8分)如图,已知直线与直线AC交于点A,与轴交于点B,且直线AC过点和点,连接BD.(1)求直线AC的解析式.(2)求交点A的坐标,并求出的面积.(3)在x轴上是否存在一点P,使得周长最小?若存在,求出点P的坐标;若不存在,请说明理由.22.(10分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)23.(10分)感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:(1)如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.应用:(2)在图2中,AD平分∠BAC,如果∠B=60°,∠C=120°,DB=2,AC=3,则AB=.24.(10分)如图,在四边形ABCD中,∠B=90°,DE//AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.(1)求证:△ACD是等腰三角形;(2)若AB=4,求CD的长.25.(12分)如图,一次函数的图像与的图像交于点,与轴和轴分别交于点和点,且点的横坐标为.(1)求的值与的长;(2)若点为线段上一点,且,求点的坐标.26.对于两个不相等的实数心、,我们规定:符号表示、中的较大值,如:.按照这个规定,求方程(为常数,且)的解.
参考答案一、选择题(每题4分,共48分)1、B【分析】将x、y的值分别代入x-2y中,看结果是否等于1,判断x、y的值是否为方程x-2y=1的解.【详解】A项,当,时,,所以是方程的解;B项,当,时,,所以不是方程的解;C项,当,时,,所以是方程的解;D项,当,时,,所以是方程的解,故选B.【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.2、B【分析】根据精确度的定义即可得出答案.【详解】精确到千分位的近似数是0.005,故答案选择B.【点睛】本题考查的是近似数,属于基础题型,需要熟练掌握相关基础知识.3、B【解析】试题分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.考点:因式分解的意义.4、C【分析】根据勾股定理,可得AC的值,从而得到AD的长,进而可得到答案.【详解】∵数轴上的点A表示的数是-2,点B表示的数是1,∴AB=3,∵于点B,且,∴,∵以点A为圆心,AC为半径画弧交数轴于点D,∴AD=AC=,∴点D表示的数为:,故选C.【点睛】本题主要考查数轴上点表示的实数与勾股定理,根据勾股定理,求出AC的长,是解题的关键.5、A【分析】作P点关于OA的对称点C,关于OB的对称点D,当点E、F在CD上时,△PEF的周长最小,根据CD=2可求出的度数.【详解】解:如图作P点关于OA的对称点C,关于OB的对称点D,连接CD,交OA于点E,交OB于点F,此时,△PEF的周长最小;连接OC,OD,PE,PF∵点P与点C关于OA对称,∴OA垂直平分PC,,PE=CE,OC=OP,同理可得,∴,∴∵△PEF的周长为,∴△OCD是等边三角形,∴故本题最后选择A.【点睛】本题找到点E、F的位置是解题的关键,要使△PEF的周长最小,通常是把三边的和转化为一条线段进行解答.6、D【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点睛】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.7、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程8、C【分析】利用平方法即可估计,得出答案.【详解】解:∵3.52=12.25,3.42=11.56,而12.25>11.6>11.56,∴,故选:C.【点睛】本题考查无理数的估算,掌握算术平方根的意义是正确解答的关键.9、C【分析】根据被开方数大于等于0列不等式求解即可.【详解】由题意得,x﹣1≥0,解得x≥1.故选:C.【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.10、C【分析】原式提取公因式,再利用平方差公式分解即可.【详解】原式=x(1﹣4x2)=x(1+2x)(1﹣2x).故选C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.11、C【解析】根据轴对称的定义逐一判断即可.【详解】是轴对称图形,故符合题意;是轴对称图形,故符合题意;是轴对称图形,故符合题意;不是轴对称图形,故不符合题意,共有3个轴对称图形故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.12、B【分析】根据分式化简依次判断即可.【详解】A、,故A选项错误;B、,故B选项正确;C、,故C选项错误;D、,故D选项错误;故选B.【点睛】本题是对分式化简的考查,熟练掌握分式运算是解决本题的关键.二、填空题(每题4分,共24分)13、75°或35°【分析】分两种情况:当为锐角时,过点A作AD=AB,交BC于点D,通过等量代换得出,从而利用三角形外角的性质求出,最后利用三角形内角和即可求解;当为钝角时,直接利用等腰三角形的性质和外角的性质即可求解.【详解】当为锐角时,过点A作AD=AB,交BC于点D,如图1当为钝角时,如图2故答案为:75°或35°.【点睛】本题主要考查等腰三角形的性质和三角形外角的性质,分情况讨论是解题的关键.14、【分析】仿照老师的推导过程,设面积为2的矩形的一条边长为x,根据x=可求出x的值,利用矩形的周长公式即可得答案.【详解】在面积为2的矩形中,设一条边长为x,则另一条边长为,∴矩形的周长为2(x+),当矩形成为正方形时,就有x=,解得:x=,∴2(x+)=4,∴x+(x>0)的最小值为2,故答案为:2【点睛】此题考查了分式方程的应用,弄清题意,得出x=是解题的关键.15、【分析】由直线点的特点得到,分别可求OA1=OC1=1,C1A2=,C2A3=,……,从而得到正方形边长的规律为Cn﹣1An=,即可求正方形面积.【详解】解:直线l:y=2x﹣2与x轴交于点A₁(1,0),与y轴交于点D(0,﹣2),∴,∵OA1=OC1=1,∴A1B1C1O的面积是1;∴DC1=3,∴C1A2=,∴A2B2C2C1的面积是;∴DC2=,∴C2A3=,∴A3B3C3C2的面积是;……∴Cn﹣1An=,∴正方形AnBn∁nCn﹣1的面积是,故答案为.【点睛】本题考查的是平面直角坐标系中有规律的点的坐标与图形的探索问题,列出前面几步的数据找到点或图形的变化规律是解答关键.16、50°或130°【分析】分类讨论当三角形是等腰锐角三角形和等腰钝角三角形两种情况,画出图形并结合三角形的内角和定理及三角形外角的性质,即可求出顶角的大小.【详解】(1)当三角形是锐角三角形时,如下图.根据题意可知,∵三角形内角和是,∴在中,(2)当三角形是锐角三角形时,如下图.根据题意可知,同理,在中,∵是的外角,∴故答案为或【点睛】本题考察了等腰三角形性质和三角形外角的性质以及三角形内角和定理的运用,分类讨论该等腰三角形是等腰锐角三角形或等腰钝角三角形是本题的关键.17、∠B=∠C【分析】根据反证法的一般步骤即可求解.【详解】用反证法证明在△ABC中,如果AB≠AC,求证∠B≠∠C,第一步应是假设∠B=∠C.故答案为:∠B=∠C【点睛】本题考查的反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判断假设不不正确,从而肯定原命题的结论正确.18、1【分析】先根据等边对等角求得∠ABC=∠C=26°,再利用三角形的外角的性质求得∠EAB=1°,再根据垂直平分线的性质得:EB=EA,最后再运用等边对等角,即可解答.【详解】解:∵AB=AC,∴∠ABC=∠C=26°,∵∠EAB=∠ABC+∠C=1°,∵DE垂直平分AB,∴EB=EA,∴∠EBA=∠EAB=1°,故答案为1.【点睛】本题考查了等腰三角形和垂直平分线的性质,其中掌握等腰三角形的性质是解答本题的关键.三、解答题(共78分)19、(1);(2)共有12、13、21、23、31、32六种情况,【分析】根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.【详解】解:(1)根据题意分析可得:有分别标有数字1、2、3的三张硬纸片,其中奇数有2个;故随机抽取一张,恰好是奇数的概率为;(2)共有12、13、21、23、31、32六种情况,大于20的有4个;故其概率为.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20、(1);(2)或或;(3)【分析】(1)根据勾股定理可以求出AO的长,则可得出A的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P的坐标;(3)根据,点在直线上,得到,利用点,关于直线对称点,根据对称性,可证,可得,,设,则有,根据勾股定理,有:解之即可.【详解】解:(1)∵点坐标为,点是轴正半轴上一点,且,∴是直角三角形,根据勾股定理有:,∴点的坐标为;(2)∵是等腰三角形,当时,如图一所示:∴,∴点的坐标是;当时,如图二所示:∴∴点的坐标是;当时,如图三所示:设,则有∴根据勾股定理有:即:解之得:∴点的坐标是;(3)当是钝角三角形时,点不存在;当是锐角三角形时,如图四示:连接,∵,点在直线上,∴和是直角三角形,∴,∵点,关于直线对称点,根据对称性,有,∴,∴则有:∴是等腰三角形,则有,∴,设,则有,根据勾股定理,有:即:解之得:【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.21、(1);(2),;(3)存在点P使周长最小.【分析】(1)设直线AC解析式,代入,,用待定系数法解题即可;(2)将直线与直线AC两个解析式联立成方程组,转化成解二元一次方程组,再结合三角形面积公式解题;(3)作D、E关于轴对称,利用轴对称性质、两点之间线段最短解决最短路径问题,再用待定系数法解直线AE的解析式,进而令,解得直线与x轴的交点即可.【详解】(1)设直线AC解析式,把,代入中,得,解得,直线AC解析式.(2)联立,解得.,把代入中,得,,,,,,.故答案为:,.(3)作D、E关于轴对称,,周长,是定值,最小时,周长最小,,A、P、B共线时,最小,即最小,连接AE交轴于点P,点P即所求,,D、E关于轴对称,,设直线AE解析式,把,代入中,,解得,,令得,,,即存在点P使周长最小.【点睛】本题考查一次函数、二元一次方程组、轴对称最短路径问题、与x轴交点等知识,是重要考点,难度较易,掌握相关知识是解题关键.22、解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.【详解】易得M在AB的垂直平分线上,且到C的距离等于AB的一半.23、(1)证明见解析;(2)1【分析】探究(1):作DE⊥AB交AB与点E,DF⊥AC交AC延长线与点F,欲证明DB=DC,只要证明△DFC≌△DEB即可.
应用(2):由直角三角形的性质可求BE=1,由“AAS”可证△ADF≌△ADE,可得AF=AE,即可求解.【详解】(1)证明:如图,作DE⊥AB交AB与点E,DF⊥AC交AC延长线与点F∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DF=DE∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠FCD=∠B,∵DE⊥AB,DF⊥AC∴∠DFC=∠DEB=90°在△DFC和△DEB中,∴△DFC≌△DEB∴DC=DB(2)∵DB=2,∠B=60°,DE⊥AB,
∴∠BDE=30°
∴BE=1,
∵△DFC≌△DEB,
∴CF=BE,
∵∠FAD=∠EAD,AD=AD,∠F=∠AED=90°,
∴△ADF≌△ADE(AAS)
∴AF=AE,
∴AB=AE+EB=AF+BE=AC+CF+BE=3+2BE=1,
故答案为:1.【点睛】本题是三角形综合题,考查全等三角形的判定和性质,角平分线的性质,直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.24、(4)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024上海房产买卖合同中介服务合同规范模板3篇
- 2025甲方合同丙方合同华能海南发电股份有限公司项目竣工决结算审计委托合同
- 2024年企业培训项目合作研发合同范本3篇
- 2025购销合同(标准版)合同范本
- 2024年度体育用品商店场地租赁与销售合同2篇
- 2024年度羊肉产业数据分析与市场预测报告合同3篇
- 2024年度材料买卖合同及绿色生产标准执行协议3篇
- 预售合同范例时候备案
- 温室气体排放控制-第4篇-洞察分析
- 鱼塘承包标准合同范例
- 《玉米合理密植技术》课件
- 《不稳定型心绞痛》课件
- 2024年世界职业院校技能大赛高职组“新型电力系统技术与应用组”参考试题库(含答案)
- 统编版(2024新版)七年级上册历史第二单元 夏商周时期:奴隶制王朝的更替和向封建社会的过渡 单元复习课件
- 大学体育与科学健身智慧树知到期末考试答案章节答案2024年温州医科大学
- 24秋国家开放大学《计算机系统与维护》实验1-13参考答案
- 走进民航智慧树知到期末考试答案章节答案2024年中国民航大学
- 半自理全护理老人护理管理服务投标方案
- 邀请函模板完整
- 沈雪春:议题式教学的课堂架构和设计论坛ppt课件
- §5-5-6圆孔的夫琅和费衍射.ppt
评论
0/150
提交评论