版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图案中不是轴对称图形的是()A. B. C. D.2.下列条件中能作出唯一三角形的是()A.AB=4cm,BC=3cm,AC=5cmB.AB=2cm,BC=6cm,AC=4cmC.∠A=∠B=∠C=60°D.∠A=30°,∠B=60°,∠C=90°3.已知(x+y)2=1,(x-y)2=49,则xy的值为()A.12 B.-12 C.5 D.-54.如图,在中,,的垂直平分线交于点,交于点,连接,若,则的度数为()A.25° B.30° C.35° D.50°5.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.① B.② C.③ D.④6.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm7.在四个数中,满足不等式的有()A.1个 B.2个 C.3个 D.4个8.△ABC的三边长分别a、b、c,且a+2ab=c+2bc,△ABC是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形9.若直线与的交点在x轴上,那么等于A.4 B. C. D.10.计算=().A.6x B. C.30x D.11.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.10二、填空题(每题4分,共24分)13.已知,如图,中,,,为形内一点,若,,则的度数为__________.14.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正确的是_____.15.如图,等腰直角三角形ABC中,AB=4cm.点是BC边上的动点,以AD为直角边作等腰直角三角形ADE.在点D从点B移动至点C的过程中,点E移动的路线长为________cm.16.如图,图中以BC为边的三角形的个数为_____.17.如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是_____.18.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C为__________.三、解答题(共78分)19.(8分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.(1)求点A的坐标及直线的函数表达式;(2)连接,求的面积.20.(8分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查。根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题.(1)这次接受调查的市民总人数是_________.(2)扇形统计图中,“电视”所对应的圆心角的度数是_________.(3)请补全条形统计图.(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.21.(8分)求下列代数式的值:(1)a(a+2b)-(a+b)(a-b),其中,(2),其中=1.22.(10分)如图,在四边形中,,,,分别以点为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,交于点.若点是的中点.(1)求证:;(2)求的长.23.(10分)如图,AB=DE,AC=DF,BE=CF,求证:AB//DE,AC//DF.24.(10分)如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上(1)直接写出坐标:A__________,B__________(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应)(3)用无刻度的直尺,运用全等的知识作出△ABC的高线BF(保留作图痕迹)25.(12分)如图,在平面直角坐标系中:(1)画出关于轴对称的图形;(2)在轴上找一点,使得点P到点、点的距离之和最小,则的坐标是______________.26.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=,求EF的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、A【解析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【详解】A.符合全等三角形的SSS,能作出唯一三角形,故该选项符合题意,B.AB+AC=BC,不符合三角形三边之间的关系,不能作出三角形;故该选项不符合题意,C.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,D.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,故选A.【点睛】此题主要考查由已知条件作三角形,应用了全等三角形的判定和三角形三边之间的关系.熟练掌握全等三角形的判定定理是解题关键.3、B【分析】根据完全平方公式把和展开,然后相减即可求出的值.【详解】由题意知:①,②,①-②得:,∴,即,∴,故选:B.【点睛】本题考查了完全平方公式,灵活运用完全平方公式,熟记公式的结构特征是解题的关键.4、A【分析】根据等腰三角形的性质和线段垂直平分线的性质可得∠B=∠C=∠BAF,设∠B=x,则△ABC的三个内角都可用含x的代数式表示,然后根据三角形的内角和定理可得关于x的方程,解方程即得答案.【详解】解:∵,∴∠B=∠C,∵EF垂直平分AB,∴FA=FB,∴∠B=∠BAF,设∠B=x,则∠BAF=∠C=x,,根据三角形的内角和定理,得:,解得:,即.故选:A.【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质和三角形的内角和定理,属于常见题型,熟练掌握上述基本知识是解题的关键.5、C【解析】试题解析:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选C.考点:基本作图.6、C【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.考点:等腰三角形的性质;三角形三边关系.7、B【分析】分别用这四个数与进行比较,小于的数即是不等式的解.【详解】解:∵,,,∴小于的数有2个;∴满足不等式的有2个;故选择:B.【点睛】本题考查了不等式的解,以及比较两个实数的大小,解题的关键是掌握比较两个有理数的大小的法则.8、A【详解】∵a+2ab=c+2bc,∴(a-c)(1+2b)=0,∴a=c,b=(舍去),∴△ABC是等腰三角形.故答案选A.9、D【解析】分别求出两直线与x轴的交点的横坐标,然后列出方程整理即可得解.【详解】解:令,则,
解得,
,
解得,
两直线交点在x轴上,
,
.
故选:D.
【点睛】考查了两直线相交的问题,分别表示出两直线与x轴的交点的横坐标是解题的关键.10、B【解析】根据分式的性质,分子分母约去6x即可得出答案.【详解】解:=,故选B.【点睛】此题考查了分式的性质,熟练掌握分式的性质是解题的关键.11、A【详解】根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.【点睛】考点是一次函数图象与系数的关系.12、C【解析】试题分析:根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.解:∵正n边形的一个内角为135°,∴正n边形的一个外角为110°﹣135°=45°,n=360°÷45°=1.故选C.考点:多边形内角与外角.二、填空题(每题4分,共24分)13、【分析】在BC下方取一点D,使得三角形ACD为等边三角形,连接DP、BD.根据等腰三角形的性质和三角形的内角和定理证明△BDC≌△BPC和,从而可证明△BPD为等边三角形,根据等边三角形的性质可得∠BPD=60°,BP=DP,证明△ABP≌△ADP,从而可得.【详解】解:如下图在BC下方取一点D,使得三角形ACD为等边三角形,连接DP、BD.∴AD=AB=AC,∠ADC=∠CAD=60°,∵∠BAC=80°,AB=AC,∴∠DAB=∠BAC-∠CAD=20°,∠ABC=∠ACB=50°,∴∠ABD=∠ADB=80°,∴∠BDC=∠ADB+∠ADC=140°,∠DBC=∠ABD-∠ABC=30°,∵,,∴,,∴,又∵BC=BC∴△BDC≌△BPC,∴BD=BP,∵,∴△BPD为等边三角形,∴∠BPD=60°,BP=DP,在△ABP和△ADP中,∵∴△ABP≌△ADP,∴.故答案为:150°.【点睛】本题主要考查对等腰三角形的性质,等边三角形的性质和判定,全等三角形的性质和判定,三角形内角和定理.作辅助线得到全等三角形是解此题的关键,此题在证明三角形全等时用到了角度之间的计算,有一定的难度.14、①②④【分析】利用“HL”证明Rt△BDE和Rt△CDF全等,根据全等三角形对应边相等可得DE=DF,再根据到角的两边距离相等的点在角的平分线上判断出AD平分∠BAC,然后利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,再根据图形表示出表示出AE、AF,再整理即可得到AC﹣AB=2BE.【详解】解:在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,故①正确;又∵DE⊥AB,DF⊥AC,∴AD平分∠BAC,故②正确;在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴AB+BE=AC﹣FC,∴AC﹣AB=BE+FC=2BE,即AC﹣AB=2BE,故④正确;由垂线段最短可得AE<AD,故③错误,综上所述,正确的是①②④.故答案为①②④.【点睛】考核知识点:全等三角形判定“HL”.理解判定定理是关键.15、【解析】试题解析:连接CE,如图:∵△ABC和△ADE为等腰直角三角形,∴AC=AB,AE=AD,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=∠3,∵,∴△ACE∽△ABD,∴∠ACE=∠ABC=90°,∴点D从点B移动至点C的过程中,总有CE⊥AC,即点E运动的轨迹为过点C与AC垂直的线段,AB=AB=4,当点D运动到点C时,CE=AC=4,∴点E移动的路线长为4cm.16、1.【分析】根据三角形的定义即可得到结论.【详解】解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是1个.故答案为:1.【点睛】此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.17、1【分析】由题意可得△ABE是直角三角形,根据勾股定理求出其斜边长度,即正方形边长,再根据割补法求阴影面积即可.【详解】∵AE⊥BE,∴△ABE是直角三角形,∵AE=3,BE=4,∴AB===5,∴阴影部分的面积=S正方形ABCD﹣S△ABE=52﹣×3×4=25﹣6=1.故答案为:1.【点睛】本题考查了勾股定理的简单应用,以及割补法求阴影面积,熟练掌握和运用勾股定理是解答关键.18、230°【分析】
【详解】∵∠A+∠B+∠C+∠D=(4-2)×180°=360°,∠A=90°,∠D=40°,∴∠B+∠C=360°-90°-40°=230°,故答案为230°.【点睛】本题考查了四边形的内角和,熟记四边形的内角和是360度是解题的关键.三、解答题(共78分)19、(1);(2)1.【解析】(1)将x=-1代入得出纵坐标,从而得到点A的坐标;再用待定系数法求得直线的函数表达式;(2)连接,先根据解析式求得B,C,D的坐标,得出BO,CD的长,然后利用割补法求的面积,.【详解】解:(1)因为点A在直线上,且横坐标为,所以点A的纵坐标为,所以点A的坐标为.因为直线过点A,所以将代入,得,解得,所以直线的函数表达式为.(2)如图,连接BC,由直线,的函数表达式,易得点B的坐标为,点D的坐标为,点C的坐标为,所以.所以.【点睛】本题主要考查了两直线相交问题,要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长,对不规则的三角形面积可以使用割补法等方法.20、(1)1000;(2)54°;(3)补全条形统计图见解析;(4)528000人【分析】(1)用电脑上网的人数除以电脑上网所占的百分比得到总人数;(2)先求出“电视”所占的百分比,根据“电视”所占的百分比乘以360°,可得答案;(3)总人数乘以“报纸”对应的百分比求得其人数,据此补全图形;(4)根据样本估计总体,可得答案.【详解】解:(1)这次接受调查的市民总人数是260÷26%=1000(人),故答案为:1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是360°×(1-10%-9%-26%-40%)=360°×15%=54°,故答案为:54°.(3)用“报纸”获取新闻的途径的人数为:10%×1000=100(人),补全条形统计图如下:(4)800000×(26%+40%)=528000(人),答:将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为528000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.21、(3)2ab+b2,2;(2)x+3,2039【分析】(3)根据单项式乘多项式法则和平方差公式化简,然后根据零指数幂的性质和负指数幂的性质计算出a和b,最后代入求值即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(3)a(a+2b)-(a+b)(a-b)=a2+2ab-a2+b2=2ab+b2.当=3,=4时,原式=2×3×4+4²=2.(2)===x+3.当=3时,原式=3+3=2039.【点睛】此题考查的是整式的化简求值和分式的化简求值,掌握单项式乘多项式法则、平方差公式、零指数幂的性质、负指数幂的性质和分式的各个运算法则是解决此题的关键.22、(1)详见解析;(2)【分析】(1)连接AE,CE,由题意得AE=CE,根据等腰三角形中线的性质得证AE=CE.(2)连接CF,通过证明△AOF≌△COB(ASA),求得CF、DF的长,利用勾股定理求得CD的长.【详解】(1)连接AE,CE,由题意可知,AE=CE又∵O是AC的中点,∴EO⊥AC即BE⊥AC(2)连接CF,由(1)知,BE垂直平分AC,∴AF=CF∵AD∥BC,∴∠DAC=∠BCA在△AOF和△COB中∴△AOF≌△COB(ASA)∴AF=BC=2,∴CF=AF=2,∵AD=3,∴DF=3-2=1∵∠D=90°,∴在Rt△CFD中,答:CD的长为【点睛】本题考查了三角形的综合问题,掌握等腰三角形中线的性质、全等三角形的判定定理以及勾股定理是解题的关键.23、见解析.【解析】先证明CB=FE,再加上条件AB=DE,AC=DF,可利用SSS判定△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,∠ACB=∠F,再根据同位角相等,两直线平行可得结论.【详解】证明:∵BE=CF,∴BE+EC=CF+EC∴BC=EF,∵在△ABC和△DEF中,AB=DECB=FE∴ΔABC≅ΔDEFSSS∴∠B=∠DEF,∠ACB=∠DFE,∴AB//DE,AC//DF.【点睛】考查了全等三角形的判定与性质,关键是熟练掌握三角形的判定定理:SSS、SAS、ASA、AAS.证明三角形全等必须有边相等的条件.24、(1)(-3,3),(-4,-2);(2)如图所示见解析;(3)如图所示见解析.【分析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新版五年级英语下册教案
- 上课迟到检讨书(合集15篇)
- 行业调研报告汇编4篇
- 中考热点素材集合15篇
- 电子公司实习报告汇编7篇
- 《呼兰河传》读书笔记(15篇)
- 边城读书笔记(15篇)
- 喹诺酮类抗菌药物合理使用的理性思考
- 七年级地理教学工作计划范例(20篇)
- 入伍保留劳动关系协议书(2篇)
- 4s店维修原厂协议书范文
- 2024-秋季新版人教版三年级上册英语单词
- 中国上市及新三板挂牌公司低空经济发展报告2024
- 2025届浙江省学军中学高三下学期第五次调研考试物理试题含解析
- 2020-2021学年北京市西城区七年级(上)期末数学试卷(附答案详解)
- DB13-T 5821-2023 预拌流态固化土回填技术规程
- 地形图测绘报告
- 村集体“三资”管理存在的问题分析
- 2024年江苏苏州幼儿师范高等专科学校招考聘用教师及专职辅导员7人高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024年7月国家开放大学本科《中国法律史》期末纸质考试试题及答案
- 八年级生物上册知识点总结(填空版+答案)
评论
0/150
提交评论