版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知二次函数,则下列说法:①其图象的开口向上;②其图象的对称轴为直线;③其图象顶点坐标为;④当时,随的增大而减小.其中说法正确的有()A.1个 B.2个 C.3个 D.4个2.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.用配方法解下列方程时,配方有错误的是()A.化为 B.化为C.化为 D.化为4.下列图形中,不是轴对称图形的是()A. B. C. D.5.下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.从一副扑克牌中,随意抽出一张是大王C.通常情况下,抛出的篮球会下落D.三角形内角和为360°6.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B. C. D.47.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.8.将抛物线先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A. B. C. D.9.下列计算,正确的是()A.a2·a3=a6 B.3a2-a2=2 C.a8÷a2=a4 D.(a2)3=a610.若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是()A.顶点坐标为(1,4) B.函数有最大值4 C.对称轴为直线 D.开口向上11.一元二次方程的解为()A. B., C., D.,12.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A. B. C.10 D.8二、填空题(每题4分,共24分)13.如图,A,B,C是⊙O上三点,∠AOC=∠B,则∠B=_______度.14.如图,,如果,那么_________________.15.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.16.如图,的半径为,双曲线的关系式分别为和,则阴影部分的面积是__________.17.一种药品原价每盒25元,两次降价后每盒16元.设两次降价的百分率都为x,可列方程________.18.如果a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d=_______cm.三、解答题(共78分)19.(8分)解方程组:20.(8分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.21.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.22.(10分)如图,在平面直角坐标系中,A,B.(1)作出与△OAB关于轴对称的△;(2)将△OAB绕原点O顺时针旋转90°得到△,在图中作出△;(3)△能否由△通过平移、轴对称或旋转中的某一种图形变换直接得到?如何得到?23.(10分)如图,点A、点B的坐标分别为(4,0)、(0,3),将线段BA绕点A沿顺时针旋转90°,设点B旋转后的对应点是点B1,求点B1的坐标.24.(10分)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.25.(12分)某超市销售一种饮料,每瓶进价为元,当每瓶售价元时,日均销售量瓶.经市场调查表明,每瓶售价每增加元,日均销售量减少瓶.(1)当每瓶售价为元时,日均销售量为瓶;(2)当每瓶售价为多少元时,所得日均总利润为元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?26.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.
参考答案一、选择题(每题4分,共48分)1、B【分析】利用二次函数的图象和性质逐一对选项进行分析即可.【详解】①因为其图象的开口向上,故正确;②其图象的对称轴为直线,故错误;③其图象顶点坐标为,故错误;④因为抛物线开口向上,所以在对称轴右侧,即当时,随的增大而减小,故正确.所以正确的有2个故选:B.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.2、A【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:,,,,,方程由两个不相等的实数根.故选A.【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.3、C【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【详解】A、由原方程,得,等式的两边同时加上一次项系数2的一半的平方1,得;故本选项正确;B、由原方程,得,等式的两边同时加上一次项系数−7的一半的平方,得,,故本选项正确;C、由原方程,得,等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;故本选项错误;D、由原方程,得3x2−4x=2,化二次项系数为1,得x2−x=等式的两边同时加上一次项系数−的一半的平方,得;故本选项正确.故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】任意掷一枚均匀的硬币,正面朝上是随机事件;从一副扑克牌中,随意抽出一张是大王是随机事件;通常情况下,抛出的篮球会下落是必然事件;三角形内角和为360°是不可能事件,故选C.【点睛】本题考查随机事件.6、A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故选A.考点:1.旋转;2.勾股定理.7、B【解析】试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.考点:1.中心对称图形;2.轴对称图形.8、A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线先向左平移1个单位得到解析式:,再向上平移2个单位得到抛物线的解析式为:.
故选:.【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减.9、D【分析】按照整式乘法、合并同类项、整式除法、幂的乘方依次化简即可得到答案.【详解】A.a2·a3=a5,故该项错误;B.3a2-a2=2a2,故该项错误;C.a8÷a2=a6,故该项错误;D.(a2)3=a6正确,故选:D.【点睛】此题考查整式的化简计算,熟记整式乘法、合并同类项、整式除法、幂的乘方的计算方法即可正确解答.10、D【分析】由题意根据根与系数的关系得到a<0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1.【详解】解:∵关于x的一元二次方程的两个实数根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D.【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键.11、C【分析】通过因式分解法解一元二次方程即可得出答案.【详解】∴或∴,故选C【点睛】本题主要考查解一元二次方程,掌握因式分解法是解题的关键.12、A【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【详解】解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【点睛】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.二、填空题(每题4分,共24分)13、1【分析】连结OB,可知△OAB和△OBC都是等腰三角形,∠ABC=∠A+∠C=∠AOC,四边形内角和360゜,可求∠B.【详解】如图,连结OB,∵OA=OB=OC,∴△OAB和△OBC都是等腰三角形,∴∠A=∠OBA,∠C=∠OBC,∴∠ABC=∠OBA+∠OBC=∠A+∠C,∴∠A+∠C=∠ABC=∠AOC∵∠A+∠ABC+∠C+∠AOC=360゜∴3∠ABC=360゜∴∠ABC=1゜即∠B=1゜.故答案为:1.【点睛】本题考查圆周角度数问题,要抓住半径相等构造两个等腰三角形,把问题转化为解∠B的方程是关键.14、【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵,∴,即,解得:.故答案为:.【点睛】本题考查的是平行线分线段成比例定理,属于基本题型,熟练掌握该定理是解题关键.15、1:1.【分析】先根据三角形中位线定理得出DE∥AB,DE=AB,可推出△CDE∽△CAB,即可得出答案.【详解】解:∵点D,E分别是AC和BC的中点,∴DE为△ABC中位线,∴DE∥AB,DE=AB,∴△CDE∽△CAB,∴==.故答案为:1:1.【点睛】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟练掌握相似三角形的判定和性质定理是解题的关键.16、2π【分析】根据反比例函数的对称性可得图中阴影部分的面积为半圆面积,进而可得答案.【详解】解:双曲线和的图象关于x轴对称,根据图形的对称性,把第三象限和第四象限的阴影部分的面积拼到第二和第一象限中的阴影中,可得阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以S阴影=.故答案为:2π.【点睛】本题考查的是反比例函数和阴影面积的计算,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,这是解题的关键.17、25(1-x)²=16【解析】试题分析:对于增长率和降低率问题的一般公式为:增长前数量×=增长后的数量,降低前数量×=降低后的数量,故本题的答案为:18、15【分析】根据比例线段的定义即可求解.【详解】由题意得:将a,b,c的值代入得:解得:(cm)故答案为:15.【点睛】本题考查了比例线段的定义,掌握比例线段的定义及其基本性质是解题关键.三、解答题(共78分)19、.【分析】根据加减消元法即可求解.【详解】解:得:.解得:代入①,解得:所以,原方程组的解为【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.20、该种药品平均每次降价的百分率是30%.【解析】试题分析:设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是,据此列出方程求解即可.试题解析:设该种药品平均每场降价的百分率是x,由题意得:解得:(不合题意舍去),=30%.答:该种药品平均每场降价的百分率是30%.考点:一元二次方程的应用;增长率问题.21、(1)证明见解析;(2)BC=1;【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【详解】(1)连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∵OC=OB,∴∠C=∠CBO,∴∠C+∠OBA=90°,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)∵⊙O的半径为,∴OB=,AC=2,∵OP∥BC,∴∠C=∠CBO=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=1.【点睛】本题考查了切线的判定与性质、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.22、(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到【分析】(1)先作出A1和B1点,然后用线段连接A1、B1和O点即可;(2)先作出A2和B2点,然后用线段连接A2、B2和O点即可;(3)根据(1)和(2)中B1和B2点坐标,得到OB为B1B2的垂直平分线,因此可以判断两个图形关于直线对称.【详解】(1)根据题意获得下图;(2)根据题意获得上图;(3)根据题意得,直线OB的解析式为,通过观察图像可以得到B1(-4,4)和B2(4,-4),∴直线B1B2的解析式为,∴直线OB为直线B1B2的垂直平分线,∴两个图形关于直线对称,即△可由△沿直线翻折得到故答案为(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到.【点睛】本题考查了旋转的坐标变换,做旋转图形,轴对称图形的判断,是图形变化中的重点题型,关键是先作出对应点,然后进行连线.23、B1点的坐标为(7,4)【分析】如图,作B1C⊥x轴于C,证明△ABO≌△B1AC得到AC=OB=3,B1C=OA=4,然后写出B1点的坐标.【详解】如图,作B1C⊥x轴于C.∵A(4,0)、B(0,3),∵OA=4,OB=3,∵线段BA绕点A沿顺时针旋转90°得AB1,∴BA=AB1,且∠BAB1=90°,∴∠BAO+∠B1AC=90°而∠BAO+∠ABO=90°,∴∠ABO=∠B1AC,∴△ABO≌△B1AC,∴AC=OB=3,B1C=OA=4,∴OC=OA+AC=7,∴B1点的坐标为(7,4).【点睛】本题考查了坐标与图形变化-旋转,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24、(2)y=-x2+2x+2.(2)P的坐标(2,2).(2)存在.点M的坐标为(2,),(2,-),(2,2),(2,0).【分析】(2)可设交点式,用待定系数法求出待定系数即可.(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.(2)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、②AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解【详解】(2)∵A(-2,0)、B(2,0)经过抛物线y=ax2+bx+c,∴可设抛物线为y=a(x+2)(x-2).又∵C(0,2)经过抛物线,∴代入,得2=a(0+2)(0-2),即a=-2.∴抛物线的解析式为y=-(x+2)(x-2),即y=-x2+2x+2.(2)连接BC,直线BC与直线l的交点为P.则此时的点P,使△PAC的周长最小.设直线BC的解析式为y=kx+b,将B(2,0),C(0,2)代入,得:,解得:.∴直线BC的函数关系式y=-x+2.当x-2时,y=2,即P的坐标(2,2).(2)存在.点M的坐标为(2,),(2,-),(2,2),(2,0).∵抛物线的对称轴为:x=2,∴设M(2,m).∵A(-2,0)、C(0,2),∴MA2=m2+4,MC2=m2-6m+20,AC2=20.①若MA=MC,则MA2=MC2,得:m2+4=m2-6m+20,得:m=2.②若MA=AC,则MA2=AC2,得:m2+4=20,得:m=±.③若MC=AC,则MC2=AC2,得:m2-6m+20=20,得:m=0,m=6,当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去.综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新版五年级英语下册教案
- 上课迟到检讨书(合集15篇)
- 行业调研报告汇编4篇
- 中考热点素材集合15篇
- 电子公司实习报告汇编7篇
- 《呼兰河传》读书笔记(15篇)
- 边城读书笔记(15篇)
- 喹诺酮类抗菌药物合理使用的理性思考
- 七年级地理教学工作计划范例(20篇)
- 入伍保留劳动关系协议书(2篇)
- 4s店维修原厂协议书范文
- 2024-秋季新版人教版三年级上册英语单词
- 中国上市及新三板挂牌公司低空经济发展报告2024
- 2025届浙江省学军中学高三下学期第五次调研考试物理试题含解析
- 2020-2021学年北京市西城区七年级(上)期末数学试卷(附答案详解)
- DB13-T 5821-2023 预拌流态固化土回填技术规程
- 地形图测绘报告
- 村集体“三资”管理存在的问题分析
- 2024年江苏苏州幼儿师范高等专科学校招考聘用教师及专职辅导员7人高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024年7月国家开放大学本科《中国法律史》期末纸质考试试题及答案
- 八年级生物上册知识点总结(填空版+答案)
评论
0/150
提交评论